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Abstract 

A computational simulation model calculates estimated recovery trajectories following traumatic 

brain injury (TBI). Prior publications include a multi-scale conceptual framework for studying 

concussion, a systems-level causal loop diagram (CLD) and an analysis of key feedback 

processes. A set of first order ordinary differential equations and their associated parameters 

determines recovery trajectories. The model contains 15 state variables, 73 auxiliary variables, 

and 50 parameters describing TBI pathology in an aggregate fashion at the cellular, network, 

cognitive and social levels. There are 1200 feedback loops, which give rise to a variety of 

behavior modes, many of which are highly nonlinear. Exogenous parameters include patient and 

injury characteristics, treatments, and time constants for recovery processes. Model testing has 

focused on reviewing the causal diagram with subject matter experts and determining sensitivity 

of model results to injury severity and patient characteristics, especially the time constants 

associated with healing/recovery processes. The model produces outcome trajectories that 

represent quick or slow recovery with no deficits, partial recovery, and the patient remaining 

indefinitely in a pathological state. While highly speculative, the model serves to demonstrate the 

potential utility of computational models in this context and to further discussion about the 

complex dynamics involved in recovery from TBI. The model also generates counterintuitive 

results, as is characteristic of complex systems. Much more research will be needed to create a 

properly supported research model that could be used or for precision medicine or to aid clinical 

trial design. 

Introduction 

There is a critical need to better understand the pathophysiology and healing processes 

associated with recovery from traumatic brain injury (TBI), which is an incredibly complex 

condition. The brain is by far the most complex organ in the human body, and reliable 

biomarkers for recovery are still lacking (Kulbe and Geddes 2016). Few effective and reliable 

treatments exist, and personalization of treatment is difficult (Stein 2015). While many studies 

and clinical trials have collected some data on traumatic brain injury (TBI), data relevant to 

concussion (mild TBI) remains scant, especially at the patient level and for multiple time points. 

Further, although the Glasgow Coma Scale has greatly benefited treatment and outcomes for 

those with severe injuries, the GCS has not shown to be as useful for mild cases of concussion 

(Chung and Khan 2013). Better models are needed to support research, diagnosis, and treatment. 

Prior research by our team has resulted in publication of a multi-scale framework for 

studying concussion (Kenzie et al. 2017) and a systems-level causal loop diagram (CLD) focused 

on concussion (Kenzie et al. 2018). Both articles included substantial literature reviews. The 

second article discusses feedback processes in considerable detail and provides an interactive 
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model using Kumu  to allow readers to study and comment on the diagram and the empirical 

support for its content and structure. 

The present research project created a demonstration computational model which 

calculates recovery trajectories following traumatic brain injury using the system dynamics 

method. Such computational models of complex multi-level systems can incorporate a variety of 

considerations, including circular causality (feedback), uncertainty, variability, non-stationarity, 

and heterogeneity. Although modeling and simulation software packages with enhanced 

flexibility and capability are becoming increasingly available, most computational modeling 

environments feature one or in some cases perhaps two or three of the preceding considerations. 

This research builds upon previous work to address all levels of TBI. The computational 

model is preliminary and serves as a demonstration of the potential capability of a computational 

model in this context. A key advantage of operationalizing this model is that it allows for the 

generation of synthetic recovery trajectories (graphs of behavior over time for key system 

variables) based on hypothesized model structure. These trajectories e suggest how the dynamic 

relationships between physiological, psychological, and social variables may be influencing 

heterogeneous recovery patterns. 

An empirically supported computational model would allow researchers to examine 

alternative explanations for differential outcomes, and, perhaps, to evaluate possible treatment 

scenarios. 

Methods 

The computational model was constructed in Vensim. The primary diagram, referred to 

as a stock-and flow-diagram (SFD), shows the relationships between variables, and can include 

labels to identify feedback loops. Associated with the elements of the diagram are equations 

quantifying the relationships between variables. The equations constitute a set of ordinary 

differential equations, and support (or auxiliary) equations that are simple constants or algebraic 

relationships. The solution to this equation set for a given set of initial conditions and parameters 

determines the values of the variables over time, which can be graphed to show a calculated 

patient recovery trajectory. 

Equations were hypothesized for the flows and auxiliary variables. Most are 

straightforward, including a dozen healing processes specified as first order (proportional) rates 

that strive to restore stocks to equilibrium. In some cases, the equation was more complex and 

required the modeler to create a more complex hypothesis regarding its structure. Knowledge of 

the physiology was used inform the equation in some cases, but in many cases no theory was 

available, so a speculative equation form was used.  

Model parameters were determined so that all of the variables remain constant in the 

absence of any impact. This is referred to as “initializing the model in steady state,” meaning that 

balancing processes are perfectly offsetting any reinforcing processes. The human body has 

thousands of balancing processes that maintain the body in a state of dynamic equilibrium. 

Calibrating the model to be in steady state serves as an important initial check of the 

model logic and equations. Furthermore, the fact that the parameter values needed to achieve 

steady state are intuitively reasonable indicates that it may be possible for the model behavior to 

resemble reality. 
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The model has been informed by qualitative input from dozens of experts. However, 

empirical support is scant. This is not due to lack of effort, but rather to the paucity of publicly 

available high-quality time-course TBI data sets covering the acute post-injury period and 

longer-term recovery. Therefore, considerably more research would be needed to transition the 

model from a mere demonstration to a properly supported research model that could be applied 

in a precision-medicine context and/or be used to help design better clinical trials for treatment 

of TBI. 

 

Results 

 

Model Description 

The model contains 15 state variables, 73 auxiliary variables, and 50 parameters that represent 

various aspects of TBI pathology, from the cellular and network level to cognition and social 

functioning, as shown in Figure 1. 

 

Of the 50 parameters, eight represent patient characteristics, seven represent injury 

characteristics, and nine indicate treatments. The remaining parameters mostly represent time 

constants or reaction rates for various recovery processes. See the online supplement for a 

complete list of model equations and parameters. Patient
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Figure 1. Computational model hybrid (stock, flow, and causal loop) diagram. The model contains 15 state variables, 73 auxiliary variables, and 50 

parameters that represent various aspects of TBI pathology, from the cellular and network level to cognition and social functioning. These include 

brain swelling, hematoma, impaired cerebrovascular autoregulation, ionic dysregulation, neuronal injury, compromised cellular energy supply, 

neuroinflammation, pathological microenvironment, network disruption, autonomic dysfunction, cognitive symptoms, stress, sleep, and coping & 

adapting. Other key calculated variables include intracranial pressure, cerebral perfusion, level of arousal, GCS, pain & migraine, need for 

cognitive rest, sensorimotor, attentional & vestibular symptoms, emotional symptoms, sleep disruption, and social functioning problems. Additional 

endogenous variables include the flow logic and a myriad of auxiliary variables. Connections among the endogenous variables create over 1200 

feedback loops.
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characteristics include prior TBI, age, sex, neural reserve, prior migraine, prior ADHD, prior 

mood disorder, and resilience. This short list is only a small portion of the numerous personal 

and injury characteristics that shape heterogeneous trajectories, and has been included to 

demonstrate the different roles these characteristics can play. Several injury characteristics, such 

as degree of rotation and presence of hematoma, are similarly included.  

Potential treatment options include evacuation of mass lesion, hyperosmolar therapy, 

CPP management, decompressive craniectomy, ventriculostomy, cardio therapy, mood disorder 

therapy, attentional/ocular therapy, and vestibular training. This list is also representative, and 

not in any way exhaustive of all possible treatments.  

Visible/measurable outcomes of interest include ICP, level of arousal, cognitive 

symptoms, coping & adapting, and sleep. Hidden state variables of interest include brain 

swelling, hematoma, impaired AR & vasoreactivity, ionic and NT dysregulation, neuronal 

damage and axonal injury, hypometabolic state, pathological microenvironment, and 

neuroinflammation. 

Finally, the model includes over a dozen exogenous time constants or “gain fractions” 

associated with the recovery processes for the pathologies across the different scales. Some of 

the time constants have an exogenous baseline value, but the runtime value is entangled in the 

feedback structure, and is therefore partially endogenously determined.  

Small-scale cellular and molecular variables are shown on the left-hand side of Figure 1, 

and larger-scale cognitive, emotional, or social variables are shown on the right-hand side. The 

basic logic is that following impact, hematoma/hemorrhage or swelling can cause an increase in 

ICP, which reduces perfusion. The level of arousal is impacted by neuronal damage and 

perfusion. If someone is in a coma (“not awake” in the model), several key subsystems are taken 

offline due to lack of consciousness. Several additional injury characteristics, patient 

characteristics, and treatment variables are shown at the periphery of the diagram. 

The model contains over 1200 feedback loops, of which 24 are labeled in Figure 1 via 

“R” and “B” symbols. Twelve of these are simple balancing loops with a single stock and its 

outflow, with logic whereby the outflow strives to return the stock to baseline (often zero). The 

other 12 labeled loops are slightly more complex, with seven of them being reinforcing and five 

of them being balancing. These 12 loops help to clarify the core logic of the model and we 

describe them in somewhat more detail below. 

The current version of the model has 138 components, which includes 15 state variables 

(computed by integrating their rates of change), 73 auxiliary variables (computed as algebraic 

functions of other model components which could be variables or constants), and 50 constants 

(mostly rate constants and other patient characteristics, plus injury characteristics, and 

treatments).  

 

Three of the reinforcing loops (or cascades) are physiological: 

1) As “ionic and NT dysregulation” increases it influences “ongoing neuronal damage 

axonal injury” causing “neuronal damage and axonal injury to increase, which influences 

“ongoing ionic & NT dysreg” causing more “ionic and NT dysregulation” 

2) As “pathological microenvironment” increases, “cerebral perfusion” decreases, causing 

increased “ischemia” which causes “cell death” to increase, which influences “cell death 

impacting path microenv” which increases “pathological microenvironment” 
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3) Increasing “pathological microenvironment” influences “increasing neuroinflammation” 

which causes “neuroinflammation” to increase, which influences “Increasing path 

microenv” which further increases “pathological microenvironment.” 

 

Three reinforcing loops are experiential and involve the variable “cognitive symptoms” (CS), as 

follows: 

4) Increasing CS influences “emotional symptoms” which influences “social functioning 

problems” which influences “increasing cog symptoms” causing CS to increase further 

5) Increasing CS influences “emotional symptoms” which influences “social functioning 

problems” which influences “increasing stress,” so “stress level” increases, which 

influences “increasing cog & emot symptoms” causing CS to increase further 

6) Increasing CS increases “need for cognitive rest,” which increases “base need for 

restorative sleep,” which increases “sleep gap,” which increases the time constant 

governing processes that that help to reduce CS. 

 

The final reinforcing loop is both physiological and experiential, as follow: 

7) Increasing “restorative sleep” decreases “PM clearing TC” which increases “clearing 

PM” which reduces “pathological microenvironment” which reduces “impairing NT” 

which reduces “increasing network disruption” which reduces “sleep disruption” which 

increases “restorative sleep.” 

 

Of the five labeled, somewhat longer balancing loops, two involve physiological variables, as 

follows: 

8) As “neuroinflammation” increases “repairing nd ai RR” increases which causes 

“neuronal damage and axonal injury” to decrease, which causes “increasing 

neuroinflammation” to decrease, which reduces “neuroinflammation.” 

9) As “network disruption” increases, “need for rerouting” increases, which increases 

“neuroplasticity” [processes] which reduce “network disruption.” 

 

The other three labeled, somewhat longer balancing loops include one or more experiential 

variables, as follows: 

10) Increasing “coping & adapting” reduces “social functioning problems” which reduces 

“need for coping & adapting,” which reduces “increasing coping & adapting” which 

reduces “coping & adapting.” 

11) Increasing “coping and adapting increases “physical exercise,” which increases “BDNF 

expression” which speeds up processes that help reduce “cognitive symptoms” which 

reduces “emotional problems” which reduces “social functioning problems” which 

reduces the “need for coping & adapting” which reduces “increasing coping & adapting” 

which reduces “coping & adapting.” 

12) Increasing “hours” of sleep” increases “restorative sleep” increases (all other things being 

equal) which reduces the “sleep gap,” which reduces “increasing sleep” which reduces 

“sleep.” 

 

Model Behavior 

One type of result that a computational model can provide is to show possible behaviors 

for a wide variety of different parameter settings, patient characteristics, and injury 
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characteristics. Figure 2 shows the time trajectories for three of the key physiological state 

variable for the baseline model run. 

 

 

Figure 2. Baseline model run, showing time trajectories for key physiological variables. 

Model parameters were set to represent a 70-year old patient with a severe injury. 

 

Preliminary Model Testing 

 

To better understand how the model structure and especially how parameter values 

influence recovery processes, we first conducted a sensitivity analysis, as follows. Several of the 

model parameters were varied over a uniform range from specified minimum and maximum 

values, with a specified increment. For many parameters, the test array was set to generate 10 

runs; less in a few cases. To easily see test results, additional “model views” were created within 

the model, two focused on physiology (the left-hand side of the model diagram) and two focused 

on cognition and psychological/ social aspects (the right-hand side of the model diagram). These 

views provided easy access to parameter values and featured sensitivity graphs that show how 

the time trajectories change for seven key state variables as parameters are varied. 

A wide variety of these sensitivity tests were performed, varying different recovery rate 

time constants and related parameters, injury characteristics, and patient characteristics. Time 

behavior was simulated for 1000 hours, just under six weeks. These tests included relatively 

“extreme values” as well as the more typical type of sensitivity test in which parameters are 

varied by a relatively small percentage (+/- 10 to 30%) to determine the relative influence of 

model parameters.  

The first set of sensitivity tests focused on the effects of key physiological parameters in 

the model for an elderly patient with a severe injury, for which baseline outcomes for three key 

physiologic al state variables: brain swelling, intracranial pressure (ICP), and 

neuroimflammation as shown in Figure 2. We varied each of the 16 selected parameters shown 

in Table 1 over a range from approximately 1/3 to 3 times their baseline values shown in the 

table. Figure 3 shows the trajectories for the three key state variables when five of the 14 

physiological parameters were varied as described in Table 1. Although not shown here, similar 

results were generated and for the other nine physiological parameters in Table 1. Figure 4 shows 

the trajectories of the three key state variables when patient age and injury severity are varied. 
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Table 1. Selected model parameters: physiological, patient characteristics, Injury characteristics 

Parameter 

Type 

Parameter Name Parameter Description Base 

Value 

Units 

Physiological base AR fix RR Base autoregulation recovery rate 0.03  

base hematoma TC Base hematoma recovery time 

constant 

70 hours 

Impact of pm on 

swelling 

Impact of pathological 

microenvironment on swelling 

0.2  

icp mult Icp multiplier 2.5  

cd to pm gain 

fraction 

Cellular death to pathological 

microenvironment gain fraction 

0.33  

base pm TC Base pathological 

microenvironment clearing time 

constant 

0.7 hours 

n to pm gain 

fraction 

Neuroinflammation to pathological 

microenvironment gain fraction 

0.2  

pm to n gain 

fraction 

Pathological microenvironment to 

neuroinflammation to gain fraction 

0.1  

base nrgy repl TC Base energy replacement time 

constant 

1 hours 

increasing HS 

parameter 

Increasing hypometabolic state 

parameter 

0.05  

ndai to ind gain 

fraction 

Neuronal damage & axonal injury 

to Ionic & neurotransmitter 

dysregulation gain fraction 

0.05  

ind to ndai gain 

fraction 

Ionic & neurotransmitter 

dysregulation to neuronal damage & 

axonal injury gain fraction 

.08  

ionic and NT RR Ionic and neurotransmitter 

dysregulation recovery rate 

1  

base edema RR Base edema recovery rate .2  

Patient char. Pt char: age Patient characteristic: age 70  

Injury char. Inj char: severity Injury characteristic: injury severity 5  
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Varied   Swelling of Brain Tissue      Intracranial Pressure         Neuroinflammation 

A. Base 

AR fix 

rate 

0.01 -

0.05 

 
B. 

Impact 

of pm 

on 

swelling 

0.05 -

0.5  

C.  

cd to 

pm gain 

fraction 

0.2 - 0.4 

 
D. 

ionic 

and NT 

RR 

0.8 - 2 

 
E. base 

edema 

RR 

0.1 - 0.3 

 
 

Figure 3. Sensitivity of brain swelling, ICP, and Neuroinflammation to five key parameters, 

Rows A to E. In row A, the parameter primarily impacts impaired AR & vasoreativity, which 

strongly impacts brain swelling. In row B, the parameter effects the gain of a reinforcing loop, 

and thus profoundly impacts brain swelling and ICP. The effect on ICP seems less because the 

baseline ICP is already severe (elderly patient w/severe injury). In row C, even modest changes 

in this gain parameter significantly impacted several state variables, including brain swelling 

and ICP. Uncontrolled cascades occurred for values above .4, indicating an opportunity for 

model improvement to address the lack of mechanisms that act to counteract such cascades. 

Also, when cell deaths exceed some threshold, recovery is not likely possible. In row D, values 

below .8 were not viable. Strong impact on many state variables. In row E, variation was limited 

to avoid triggering a cascade. High impact on brain swelling as would be expected, and, 

accordingly, on ICP. Only modest impact on the other state variables. 
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Varied   Swelling of Brain Tissue       Intracranial Pressure      Neuroinflammation 

A.  

Pt char: 

age 

10 - 80 

 
B.  

Inj 

char: 

severity 

1 - 5 

 
Figure 4: sensitivity of brain swelling, ICP, and neuroiflammation to patient age and injury 

sensitivity. For row A, Since the base run was for age 70, the blue line is near the top.The impact 

of age on restorative/healing rates is very simplistic and consequently its impact in the model 

may be exaggerated and therefore not plausible. In row B, high severity causes an unfavorable 

cascade in a simulated 70 year old patient. Younger patients could potentially survive a more 

severe injury. Less severe injuries exhibit ICP levels that return eventually to baseline. While this 

could happen, the simulated trajectories may not represent the most likely time to recovery. 

Next, we made sensitivity runs for the cognitive and psychological/ social parameters that 

influence the recovery process for a less severe TBI, both acute and intermediate to longer term. 

These parameters are also relevant to medium and long-term recovery processes for severe TBI. 

For these tests, the base case is a mild TBI involving a concussion for which the injury severity 

is “1” and there is no hematoma. Patient age is 20. Figure 5 shows the baseline recovery 

trajectory for three of the key cognitive state variables. This case represents a relatively slow but 

steady recovery from the injury. 

 

 

Figure 5: Baseline cognitive outcome trajectories  



   7 
 

Table 2 shows the model parameters that were tested and their baseline values, grouped 

by cognitive, patient characteristics, injury characteristics and treatment-related. Figure 6 

provides examples of how the trajectories for the selected outcomes changed when parameters 

were varied over a broad range of values. 

 

Table 2. Selected model parameters: cognitive, patient characteristics, Injury characteristics, and 

treatments 

Parameter 

Type 

Parameter Name Parameter Description Base 

Value 

Units 

Cognitive ces impact parm cog emot symptoms multiplier .5  

cog rest parm cog rest parameter .2  

cog sympt gain cog symptom gain .2  

base cog emot reduc 

TC 

cog emotional symptom reduction time 

constant 

1 hrs. 

sleep adj TC sleep adjustment time constant 5 hrs. 

sleep disruption parm sleep disruption parameter 1  

stress red TC stress reductions time constant 1 hrs 

base coping adapt TC coping/adapting time constant 20 hrs. 

ANS repair TC 

parameter 

Autonomic nervous system repair time 

constant 

20 hrs. 

base pe physical exercise 1 hr./wk. 

Patient 

char. 

Pt char: age age 20 yrs. 

Pt char: prior TBI prior TBI 0  

Pt char: migraine history of migraine 0  

Pt char: mood 

disorder 

history of mood disorder 0  

Pt char: ADHD ADHD diagnosis 0  

Pt char: neural reserve neural reserve 1  

Pt char: psych. 

resilience 

psychological resilience 1  

Injury char. Inj char: severity injury severity 1  

Inj char: rotational? rotational: yes/no 0  

Inj char: brain stem 

and/or neck whiplash 

brainstem and/or neck whiplash: yes/no 0  

Treatment Tx: attentional, ocular attentional, ocular therapy 0  

Tx: vestibular trng vestibular training 0  

Tx: mood disorder mood disorder drugs 0  

Tx: cardio cardio therapy 0  
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Varied    Network disruption               Cognitive symptoms             Coping & adapting 

A. 

ces 

impact 

parm  

 

0.2 - 2 

 

B. 

Base 

cog 

emot 

reduc 

TC 

0.5 - 5 

 
C.  

Pt char: 

age 

 

10 - 80 

 
D. 

Pt char: 

prior 

TBI 

 

0 or 1 

 
E. 

Pt char: 

neural 

reserve 

 

0.5 - 2 

 
Figure 6: Sensitivity of Network disruption, Cognitive symptoms, and Coping & adapting 

to five key parameters, Rows A to E, including two cognitive parameters and three patient 
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characteristics. In row A, higher values significantly change the magnitude of the initial 

symptoms, which then subside relatively quickly. In row B, larger values increase initial spike 

and tend to slow recovery to a degree. For row C, age significantly affects network disruption 

recovery, which in turn impacts cognitive symptoms, and coping. In row D, prior TBI retards 

network disruption recovery, which influences cognitive and other variables; these remain in a 

mildly pathological state as a result. In row E, network disruption and coping & adapting are 

significantly impacted. 

Figure 7 shows the sensitivity of outcomes to two of the injury characteristics. 

Varied    Network disruption               Cognitive symptoms             Coping & adapting 

A. 

Inj char: 

severity 

 

0.5 - 2 

 
B. 

Inj char: 

brainstem 

and/or 

neck 

whiplash 

0.5 - 2 

 
Figure 7: Sensitivity of Network disruption, Cognitive symptoms, and Coping & adapting 

to two injury characteristics: severity and brainstem, and/or neck whiplash. In row A, Injury 

severity remains in the realm of relatively mild TBI. Network disruption varies significantly, and 

at the injury severity of 2, the modeled patient was not fully conscious for four days post injury 

(GCS 11), so the effect on cognition, etc. are delayed. And since physiological repair process 

begin during this period, the peak of the trajectory of “coping & adapting,” for example, does 

not exceed that for a slight less severe injury that did not result in a full coma. In row B, the type 

of injury increases the cognitive and psychological impact, most noticeable in the need for more 

coping &adapting. 

These sensitivity tests have shown that the model behaves plausibly over a range of 

conditions, and shows potentially interesting behaviors. In fact, however, much more model 

testing and refinement is needed for a model of this complexity. Additional tests would include 

comparison of model behavior to high-quality reference behavior data, additional sensitivity 

analysis, hypothesis testing, analyses of model feedback structure, and fully characterizing the 

range of applicability of the model in terms of the extreme values of parameters and exogenous 

variables. Furthermore, the dimensions for every parameter and variable would be specified and 
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dimensional consistency analyzed in detail. This full battery of testing would be carried out after 

a realistic and empirically supported model is achieved…one that incorporates to a much greater 

extent the body of TBI knowledge. Detailed model experimentation would commence after the 

full battery of tests has been completed. 

However, since the model was developed to demonstrate how a computational model 

could potentially be applied to recovery from brain injury, the next section provides the results of 

model experiments that go beyond what would normally be warranted given the current 

conceptual nature of the model. These experiments focus on finding sets of parameters and 

conditions associated with various recovery trajectory patterns. Conditions could include 

parameters and characteristics, as well as possible treatments. 

To demonstrate this, computational models are paired with optimization methods using 

an objective function that minimizes the difference between model calculated recovery trajectory 

and idealized recovery trajectories. We also searched for combinations of simulated treatments 

that result in the quickest and most complete patient recovery. Consider a recovery trajectory in 

which ICP remains at 30 mmHg. While this ICP would not be survivable indefinitely, it is a 

simple pathology to describe, and knowing the associated parameter values could be informative. 

The analysis, implemented in Vensim, required a data file called ICPdata, to be created, 

containing a constant value of 30. The “payoff” function in the optimization tool was set to 

minimize the difference between the “ICP” data in this data file and the ICP calculated in the 

model. Seven parameters were selected to be varied, and min/max values were specified for each 

of them: base AR fix RR, base hematoma TC, impact of pm on swelling, icp mult, cd to pm gain 

fraction, base pm TC, and n to pm gain fraction. 1000 simulation runs were done, to find an ICP 

trajectory that matched the “data” file. Three parameters were significantly changed: base AR fix 

RR, from .03 to .01, icp mult, from 2.5 to 7.7, and cd to pm gain fraction, from .33 to .66. 

Figure 8 shows the resulting state variable trajectories. Allowing the “icp mult” 

parameter to be increased beyond 3 was not intended; this may not have a valid physiological 

interpretation, but it may have inadvertently led to an interesting insight regarding the persistence 

of high ICP as often seen clinically. 

 

 

Figure 8. Trajectories based on parameter values that result in ICP staying high 

Early in the run, ICP exceeds 30 which would likely not be survivable. Still the analysis 

does show a way that ICP could remain at 30. The changes in parameter values may or may not 

be interpretable. The 3X reduction in the “AR fix RR” represents significant impairment in the 

speed at which the body can repair impaired cerebral auto-regulation and/or vasoreactivity. Such 

a reduction may or may not be plausible. The tripling of the icp Mult dramatically increases 
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sensitivity of ICP to impaired AR/VR and/or brain swelling, and the doubling of the cd to pm 

gain fraction (governing how cell death influences the pathological microenvironment) may 

similarly suggest possible pathologies for consideration. 

A second scenario of interest are conditions that result in full recovery from a mild injury 

within a few weeks, as is the case for most mild injuries. For this case the state variable of 

interest is “cognitive symptoms,” for which the goal is to return to zero within two weeks (340 

hrs.). The search process varied within plausible limits nine physiological parameters, four 

cognitive parameters, and one patient characteristics. 

The search algorithm ran 2512 simulations and five parameters were changed by factors 

of 2 to 2.5, three physiological, one cognitive, one patient characteristic. The results are 

highlighted in Table 3.  

Table 3. Parameters found by search that help to assure quick recovery. The algorithm changed 

highlighted values by a factor of two or more 

Type Variable Base value Revised Value 

Physiological base AR fix RR 0.03 0.034 

 impact of pm on 

swelling 

0.2 0.50 

 cd to pm gain fraction 0.33 0.13 

 base pm TC 0.7 0.80 

 pm to n gain fraction 0.1 0.1 

 base nrgy repl TC 1 1.5 

 ind to ndai gain 

fraction 

0.1 0.65 

 ionic & NT RR 1  

 base edema RR 0.2 0.1 

Cognitive ces impact parm 0.5 0.62 

 base cog emot reduc 

TC 

1 1.13 

 stress red TC 1 1.36 

 base coping adapt TC 20 10.3 

Pt Characteristic Pt char: age 20 10 

 

Figure 9 shows the resulting trajectories for the three primary physiological state 

variables and three primary cognitive state variables. 
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Figure 9. Graphs of full recovery optimization results 

Many additional experiments could be done to further demonstrate the potential utility of 

systems level computation model for traumatic brain injury, but the two examples shown provide 

an initial demonstration of the potential. 

Discussion 

The computational model underscored the complex behavioral impacts, both beneficial 

and pathological, related to the role of inflammation in TBI. The tight coupling of processes 

makes it difficult to determine cause vs. effect. There is clearly a need to better understand repair 

processes, including how age influences repair processes. One general implication is that 

physiological processes tend to more sensitive to parameter changes, due in part to the number of 

reinforcing processes or cascades, underscoring the need for longitudinal data regarding patient 

state during recovery, both as indicated by signs, symptoms, and deficits, but also biomarkers 

tied to key physiological processes. 

 

The system dynamics method demonstrated in this report is widely considered to be 

capable of providing value and add value even when data is scant (Sterman 2002). Furthermore, 

there are several systems analysis tools that create models based on structural (as opposed to 

parametric) information to create models that can be used productively to analyze behavior of 

complex systems. Early applications include ecological systems (Puccia and Levins 1991). So it 

is not necessarily surprising that a conceptual model could be useful even without empirical 

support. Of course, model utility will increase significantly with appropriate data. 

An important and difficult challenge is determining the “right” model boundary. This 

involves deciding which processes to include at least at the outset, and which to exclude despite 

their potential relevance. The modeler must also determine which aspects to treat as exogenous, 

either as constants or as exogenous time series. Such aspects can influence the recovery process 

and the patient experience, but not the other way around. Conversely, the modeler must 
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determine what to include as endogenous components/aspects/variables that influence patient 

experience and recovery, and are in turn influenced and changed during the recovery process. 

 

To further the potential for systems level computational modeling, in additional to 

improving empirical support, it could also be advantageous to migrate the model from the system 

dynamics framework to a more robust computational environment, perhaps a combination of R 

and its many packages, and Python and its various and extensions. This would allow researchers 

to assemble a database with actual and/or speculative sets of injury and patient characteristics, as 

well as estimates of uncertainty/variability, and then to run the model in “Monte Carlo” mode in 

order to obtain a cloud of trajectories based on these uncertainties and variabilities instead of a 

single trajectory.  

 

Future Opportunities 

More research is needed to transition the computational model from a demonstration 

model to a properly supported research model that could potentially be used for precision-

medicine application or to use as an aid to clinical trial design. 

The significant future step in this endeavor would be to create an appropriate 

computational model framework to address these multilevel phenomena with complex feedback 

structures, so as to address the high uncertainty/variability and the considerable heterogeneity at 

the individual level as well as lower in the system hierarchy, e.g. at molecular and cellular levels. 

Estimating the recovery trajectory for a particular TBI patient will require effective 

representation of the individual’s particular characteristics and details regarding their injury via 

sets of unique parameter values. That every patient is different is referred to as patient 

heterogeneity, and the research community believes that capturing these differences is one of the 

keys to increasing understanding of complex biological systems such as TBI pathology and the 

associated recovery processes. It is not known yet whether it will be necessary to model 

individual patients or if it may be sufficient to model groups or clusters of patients whose 

responses to TBI and their associated recovery processes are similar. 

The characteristics of a patient or patient group/cluster could be a vector of parameter 

values that may or may not include both mean values and degree of variability. It is not yet clear 

whether the latter could be determined from the overall patient population or will need to be 

different for each patient/cluster. 

It seems likely that in order to provide confidence bands around estimated trajectories, it 

will be necessary to use a Monte Carlo approach to make a set of model runs for each patient or 

cluster. Each model run would sample from probability distributions for highly uncertain 

parameter values, thereby creating a family of trajectories for outcome metrics. Confidence 

intervals could be estimated at key time points for these metrics to create plausible upper and 

lower bounds for the estimated trajectories. However, doing so might be highly computationally 

intensive, and therefore necessitate the development of an efficient sampling strategy. 

Once data regarding the recovery trajectories in terms of key metrics for 

individuals/clusters is available, it may be possible to estimate unknown or latent parameter 

values. Such data could also help to estimate the variability of key input parameters and 

outcomes, both at the population level and within identified clusters of patient trajectories. 
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It seems likely that it may also be the case that rather than treating the brain as a single 

aggregate organ it may be necessary to estimate different parameters for various “regions” of the 

brain, either for an individual or for a group of similar individuals. Open questions include how 

best to represent/model brain/network properties/logic/functioning/behavior and at what 

resolution, and whether parameters differentiated by brain region are orthogonal to or highly 

correlated with parameters differentiated by patient group/cluster. 

Another question regards how to incorporate, integrate, or couple the computational 

model to the results of statistical/correlational/black-box data analysis/datamining/machine 

learning models. These latter models are applied to datasets that may contain aggregate data 

and/or individual data regarding injury nature and severity, patient signs, symptoms, and deficits 

(SSDs) collected immediately post injury, as well as treatments, therapies and other interventions 

applied at different time points. Ideally, these datasets would also provide longitudinal data 

regarding the patient’s recovery “trajectory” in terms of SSDs, and their ultimate outcome. 

Figure 10 expresses the requirements for a possible data/model integration framework as 

a flow chart. From a causal loop diagram, a Vensim model is specified and calibrated, reflecting 

baseline or typical parameter values. Data arrays would be developed containing typical and 

pathological patient-specific parameter values. Some of the parameter values would be constants 

and others would specify the parameters of probability functions (pdfs) reflecting sources of 

uncertainty/variability. Scripts would be developed to make sets of simulation runs representing 

different patients or clusters of patients (heterogeneity) and also reflecting uncertainty via 

sampling from probability distributions in Monte Carlo fashion. Results would be summarized 

visually to facilitate interpretation. 

 

Figure 1. Computational framework block diagram 

The suggested framework does not include the logic for estimating model parameters for 

a particular patient or cluster in order to achieve the best fit between model-calculated 

trajectories and the empirical data. More importantly, the framework does not fully 

accommodate the multilevel nature of the problem. It is likely that conceptual and temporal 

model boundaries will need to be drawn so that the core “logic” of the system can be 
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appropriately modeled as a set of differential equations. This would imply that cellular and 

network-related processing would need to be treated in some sort of aggregate fashion, perhaps 

by brain region, rather than striving to create logic at the level of individual neurons and their 

milieu. 

A model developed using the suggested computational framework would be capable of 

being calibrated to generate differential recovery trajectories at the patient or patient cluster 

level. Some of the parameters would be specified based on empirical data, and other parameters 

would be estimated using optimization methods to minimize model fitness error. Figure 11 

shows a mockup dashboard showing how the results of applying the model and framework to 

clustered patient level data might be displayed. Model trajectories would almost certainly not 

match the data to the degree shown in the mockup. 

 

Figure 2. Mockup of Model Results Dashboard. Fictitious #'s for illustration only. Wd. show 

parms. plots of case data, and model calcs by cluster along w/fit stats. 

Another use for combined optimization and simulation could be to search for effective 

combinations of therapies for different combinations of injury and patient characteristics. The 

present demonstration computational model represents treatments in a very simple fashion such 

that the use of optimization would not likely reveal useful or novel insights. An empirically 

supported model would be necessary. 

 

Conclusion 

Despite the dizzying complexity of traumatic brain injury, a systems-level dynamic 

model could potentially contribute to increased understanding and help to sharpen future 

research. With even a modest degree of patient-level longitudinal data, this type of model could 
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likely contribute to the development of more nuanced TBI classification, personalization of 

therapies and their timing, and more effective clinical trial design. 
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