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ABSTRACT  

As the predictions made by a mathematical model gets validated, the level of confidence 

on the model grows with every successful prediction. With this rise in confidence one is 

tempted to make inferences from the more abstract parts of the model. This may result in 

perceived notion of contradictions or paradoxes. For an ontologically oriented non-

general system theorists the relation between model and real-world such that the model 

results are applied, is a complex one. Let me illustrate this using one of the most famous 

models in computational neuroscience, the Hodgkin-Huxley model. 

Since its unveiling 67 years ago, the system of the four differential equations have 

successfully modelled other axons and entire neurons based on the modelling schema. 

For the typical model the equations are such that one is a derivative of the membrane 

voltage. This is coupled to the remaining three derivatives of the probability that three 

different ion gates are open. Consider the case of a single channel with four charged 

particles. And the probability that each charged particle is in a position to open the 

channel is 0.5. But a real cell membrane has more than one channel of the same type, say 

ten. Does that mean there are only four charged particles for all the ten channels 

combined? How can a single channel have four charged particle and at the same time the 

number of charged particles in the remaining nine channels is also ten? 

This contradiction leads to the prediction-inference dilemma. The dilemma that the model 

makes successful predictions yet, inferences from the model results in inconsistencies. If 

we waited until someone produced a type of channel with four charged particles and also 

four charged particles for an arbitrary number of the channel we would not be using the 

Hodgkin-Huxley model today. This would be like, not using geometry until someone 

produces a point with no dimension. 

From the perspective of a general system theorists the prediction-inference dilemma is 

resolved. This is because from a general system view, a mathematical model has two 

facets; principal quantity/ies and secondary quantity/ies or constructs. The principal 

quantity agrees with the measurable quantity. For instance, membrane voltage variable in 

the system of equations. The principal quantity and the measured quantity are two 

different quantities. The model and real-world relation is provided by the agreement 

between the quantities. Secondary quantities are the result of mathematical abstractions; 

concepts, operations and symbols of which there are no counterpart in the real-world. 

This is the Slepian’s two-world view from information theory. 

In the interdisciplinary field of neuroscience the role of computational neuroscience 

(also, theoretical or mathematical neuroscience) is to join the disciplinary rungs of the 

neuroscience ladder. The computational neuroscientist must therefore be a general system 
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theorists and also be proficient in the science of modelling. This paper will present the 

solution to the prediction-inference dilemma as an illustration of the general systems 

approach to the science of modelling in computational neuroscience. 

Keywords: general systems theory, model making, computational neuroscience, neural 

network, portable concepts. 
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Figure 1. The neuroscience ladder. SR stands for scientific reduction and MOR for 

model order reduction. 

QUANTITATIVE MODELING IN NEUROSCIENCE  

Model making in neuroscience involves at least two levels of modelling: component 

modelling and system modelling. The component modeller is able to dig more deeply 

into a particular field, like biology. For instance, Hodgkin and Huxley (1952) developed 

innovative experiments to study the ionic compositions and its dynamics with respect to 

the electrical potential across the cell membrane. The knowledge led to the derivation of 

a model of the giant squid axon, popularly known as the Hodgkin and Huxley model 

(HH). Therefore, physical measurements from the real-world is reduced to a 

mathematical form. This is scientific reduction (Figure 1). It is an approach commonly 

employed in specialized disciplines, most notably, physics. 

A system consists of both the object of study and the model of that object. Therefore, a 

component model is a system, albeit a smaller scale one. Every system is contained in a 

larger system. The systems modeller trained in the overall view aims to tie the 
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components of the system together. Fields of applied mathematics greatly help the effort. 

However, it is a necessary but insufficient requirement. For instance, although a systems 

modeller can tie together few HH models in a system, adding a few more HH models will 

eventually lead to the unavoidable barrier in the form of a limit on the power of any 

computing device. Weinberg calls this the “Square Law of Computation” (Weinberg, 

1975, p6-8). The amount of involved computation increased at least as fast as the square 

of the number of equations (Figure 2). Therefore, with double the number of equations, 

solving it in the same amount of time will require a new computer that must be four times 

as powerful. 
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Figure 2. Illustration of the square law of computation. For the first (top) case the 

law is 2n and for the other is n22. The idea is that, as the system grows in size the 

amount of required computation increases by some multiple of 2. 
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When confronted with the issue of the square law of computation, wisdom from past 

experiences show that some simplification must be made. The simplification when done 

right is not the simplification of science. “Doing it right” is the science of simplification. 

Weinberg uses Newton’s analysis of planetary orbits to illustrate this. Newton 

successfully reduced the number of equations required solving on the order of 1030,000 to 

just about 10 equations, resulting in what some call “the greatest generalization achieved 

by human mind.” Weinberg says that Newton’s genius was, 

 “… his ability to simplify, idealize, and streamline the world so that it became, in some 

measure, tractable to the brains of perfect ordinary men. By studying the methods of 

simplification that have succeeded and failed in the past, we hope to make the progress of 

human knowledge a little less dependent on genius.” (Weinberg, 1975, p12) 

The simplification of component models to build a larger system is called model order 

reduction. If we concern ourselves only with the general characteristics, complexity and 

randomness of any system, most neuroscience models will come under Weinberg’s 

region of organized complexity (Figure 3). The region where systems are too complex for 

analysis and too organized for statistics (Weinberg, 1975, p17-19). Weinberg calls this 

the “vast no-man’s land of medium numbers.” In systems of organized complexity the 

gross effects of interaction among a huge number of variables tend to produce 

measurable results or observables that cluster tightly around a very small numerical range 

of values (Wells, 2010, p173). This is why model order reduction is possible with 

neuroscience models. 
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Figure 3. Types of systems based on complexity and randomness. 
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THE PREDICTION-INFERENCE DILEMMA  

Suppose a model has garnered much confidence due to its successes in making 

predictions. Are some inferences drawn from the model incongruent with physical 

measurements? The answer seems to be no, and yet they seem so. 

Movements of ions through the resistance of the cell membrane results in current flowing 

through the cell membrane. This resistance is a reflection of “permeability” of the ions. 

Compared to other ions the concentrations of the sodium ions (Na+) and the potassium 

ions (K+), make the bulk of the ionic concentrations, extracellular and intracellular 

respectively. Therefore, the collective Na+ and the collective K+ flowing through the 

membrane are considered; NaI and KI . And the flow of rest of the ions are lumped as
LI . 

This simplification makes possible the description of ionic current across the membrane 

with just three components,
K Na LI I I I   . Using K+ flow I will illustrate the concept 

of the prediction-inference dilemma. The model is shown in Figure 4. 

K
+
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SIDE VIEW
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Gate openedGate closed

1  nn

n  : rate of flow to

outside.

n   : rate of flow to

inside.

Gate opened Gate closed

1  n = Probability that each

                            will in position for closed gate.

n = Probability that each

                    will in position for open gate.

max 4

K Kg g n

 

Figure 4. Illustration of K+ flow through the “resistance” of the membrane. When a 

disturbance is created such that the membrane voltage ( MV ) is changed from rest, 

K+ flows out. After sometime it flows in to return to equilibrium. 
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The Model 

Permeability is the freedom with which the membrane allows K+ to pass. For charged 

solutes like K+, their permeability takes into account the electrical forces. The driving 

force is the resultant of the equilibrium potential ( KE ) yielded by the concentration 

difference (in and out the cell) and the potential difference across the membrane 

(membrane potential,
MV ) due to all the ions. Let us define it as

DF M KV V E  . 

The permeability coefficient has the dimension of a conductance (mho or Siemens). For 

K+ ions they are referred to by the conductance
Kg . 

Whatever the relation of
KI and

DFV , the definition
K K DFg I V is valid. However the 

degree to which
Kg measures real properties depends on how they are measured. When 

the measurements are made fast enough that the membrane has no time to change, 

then
Kg is the constant of proportionality to

K DFI V . Thus, KV is taken constant and the 

conductance for a range of
MV can be measured. 

Although the above definition of conductance helps provide a measurement of the 

physical property, it is lacking as a source of insight. To study the possible cause of K+ 

flowing in and out the cell based on Kg vs. MV measurements, Hodgkin and Huxley 

employed kinetic theory with the assumption of a first order reaction. Based on this 

simplification, 

max 4

K Kg g n  [1] 

where, the constant
max

Kg is the maximum conductance, the exponent 4 is the number of 

similarly charged particles and [0,1]n is a dimensionless variable representing the 

proportion of charged particles in a certain position say, position to open for K+ to flow. 

Hence, the proportion in a position to close is1 n . The variable is given by, 

(1 )n n

dn
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where, n and n represent the rates; n , the rate at which the proportion of charged 

particles in a position to open transitions to a position to close, and n , the rate in the 

opposite direction. They are given by, 
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where, the constant
restV is the resting membrane potential. Therefore

Kg is the 

conductance of the voltage-dependent potassium channel. 

The Predictability 

Experimental observations shows that the model is congruent with conductance from 

physical measurements. Since the introduction of the model 67 years ago different 

species of voltage-dependent potassium channel has been discovered. Investigators have 

found that different values of the exponent of n can represent various species. 

The seemingly conjuring term n has proven prescient in describing how the channel 

functions. When Hodgkin and Huxley first introduced the term not much was known 

about what we now call as K-channels. The equation [2] is a form of the first-order rate 

equation 

0
0 0(1 )

dp
p p

dt
     

[4] 

where,
0p is the probability that the process is open and

01 p is the probability for closed 

process. The use of n therefore introduces the idea of some gating mechanism in the 

channel. Biologists have discovered that this process is performed by a gate-like 

mechanism in the pore of the potassium channel (Figure 4). Thus, n is the probability that 

the gate is open. It cannot be emphasized enough that the n variable was part of the model 

years before the discovery of gates. Because n is a function of time and voltage (
MV ) 

these channels come under the family of channels called voltage-gated channels. 

With all the success in predictions accrued by the model over the years, it is not a 

surprise that the HH model garners much confidence with regards to how well it 

represents or reflects the electric neuron. One researcher after another over the years have 

successfully modelled other axons and entire neurons based on the HH model schema. A 

reason why it may not be used to model larger systems is because of the aforementioned 

square law of computation (Figure 2). 

The Dilemma 

We have a model that is not only congruent with physical measurements and a model that 

covers a gamut of varying channel species, but a model that is able to describe deep 

seated functional mechanisms. Based on the confidence of the model suppose that the 

probability that the gate is open 0.5n  . Also consider just one channel. The term 4n is 

the distribution of all the four charged particles, the probability that all four particles are 

in a position to open the gate assuming that they have equal probabilities. Is it sensible to 

infer that there would be only four charged particles in a channel? What if there are more 

than one channel? 

Although this might appear to some as an extreme or exaggerated example one such 

experience regardless of how much confidence one has on a model can lead to the 
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dilemma. That is, either continue to have confidence in the model or discard the model. A 

reason why one gets into this kind situation is due to Bacon’s idols. Bacon says, 

“The human understanding, when any proposition has been one laid down, forces 

everything else to add fresh support and confirmation; and although most cogent and 

abundant instance may exists to the contrary, yet either does not observe or despises 

them, or gets rid of and rejects them by some distinction, with violent and injurious 

prejudice, rather than sacrifice the authority of its first conclusions.” (Bacon, 1620, p15) 

He continues, 

“The human understanding is most excited by that which strikes and enters the mind at 

one and suddenly, and by which the imagination is immediately filled and inflated. It then 

begins almost imperceptibly to conceive and suppose that everything is similar to the few 

objects which have taken possession of the mind, whilst it is very slow and unfit for the 

transition to the remote and heterogeneous instances …” (Bacon, 1620, p16) 

Mistakes

Should do.Should not do.

Teacher recording mistakes.

Do nothing.

Error of Commission:

 Do something you 

should not have done. 

Error of Omission:

 Do not do something you 

should have done. 

 

Figure 5. Illustration of Ackoff’s errors of commission and errors of omission. Most 

cost-profit analysis only record the mistakes. Thus, to maintain one’s position, say 

as a student or an employee, the simplest way to maintain stability is to do nothing. 

The ontology centred when faced with such a dilemma will consider two choices; accept 

or reject the cause of the dilemma. However going with either of these choice would be a 

mistake. Ackoff (2006) calls these respectively as the “error of commission”, you do 

something you should not have done, and the “error of omission”, you do not do 

something you should have done (Figure 5). Since most cost-profit analysis record 

mistakes, it is very common to zone in on the error of commission. In such situations the 

easiest way to maintain stability in the sense that you don’t get judged (for the mistakes) 

is to do nothing. Although this treatment of mistake can lead to stability, it prevents 

change, that is, understanding of the system. 
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Therefore most neuroscientist when confronted with examples like the one illustrated 

here, will do nothing. Thus, not committing the error of commission. But, as a result they 

will be committing the error of omission. The error that they do not resolve the dilemma. 

Though our model is mathematical, the contradiction is not in math but how we relate to 

the real phenomenon. We are not limited like in math where, to avoid mathematical 

contradiction one must hold yes or no. There is a third alternative, resolve the dilemma. 

MATHEMATICAL MODELS APPLIES TO IDEALIZED SYSTEMS 

Before discussing how to resolve the prediction-inference dilemma, let me explore why 

one may invent a mathematical model. At different stages of consideration of a body of 

real phenomenon one may try to develop, a set of inventions and a resulting body of 

theory. That is, invent a mathematical model such that it applies to an idealized physical 

system which seem close enough to the real physical system. The hope of the inventor is 

that the idealized system will explain the real phenomenon. It is often the case that with 

the growth and development of the model many modellers tend to forget that the model is 

a representation of an idealized system, or worst fails to recognize. 

Mathematics is a language for saying things precisely. The mathematical relation indicate 

real relation in a condensed way. It is also economical because one can in a relatively 

cheap manner carry out paper equivalent of real experiments. Calculations that would 

happen under certain assumed conditions. 

The relation between the model and the real-world is complex. Ask an engineer building 

hard disk drives how Galileo’s laws of inclined planes hold? The engineer dealing with 

ball-bearings, one set for the rotating discs and another set for the actuator arm, might 

respond saying that the law applies to the special and simple case of inclined planes. 

What he means to say is that it is modelled on the idealized system of inclined planes. In 

other words, the law holds precisely for a mathematical model and approximately for 

actual material. As Weaver puts it, 

 “… a great many “scientific laws” that we tend to forget that very many of them are 

really the theorems which hold strictly only for mathematical models, though they are 

obeyed closely enough by actual phenomena so that they are highly useful.” (Weaver, 

1963, p58) 

Just because a model holds precisely only for the idealized system and approximately for 

the real phenomenon does not mean we do not use the model or even discard the model. 

This would be like not using geometry because there are no physical points without 

dimensions and lines with no thickness. Theoretically one could continue to search for a 

phenomena that conforms to the assumptions of the theory/model, i.e., search for the 

ideal physical system. But, if we did so we would not be using geometry and most of the 

fundamental ideas of human knowledge and discovery. 
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Figure 6. Some models based on probability theory. 
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However, if one wants to use the model it is important to keep in the vanguard of one’s 

thought the relationship between mathematical model and the events of the real world. If 

one keeps in mind the model-real world concept, the confusion and difficulties will 

vanish. Let me illustrate this using probability theory, a branch of mathematics that may 

appear magical, and that which have led to many debates among mathematicians, 

philosophers and logicians. 

Toss a coin, a large number of times. It seems sensible to believe that half of them will 

end up as heads and the other half, tails. It may also seem impossible to suppose that the 

actual number of heads would exceed those of tails by thousands. You would be wrong 

with the latter supposition. One reason is because the first supposition is based on an 

idealized system where all the events are equally probable. However that does not mean 

that a model based on an idealized system can’t apply usefully to a real situation. 

Take the example of the fictitious and idealized urns and balls. The probability of 

drawing any one ball from the urn is the same as for any other. Consider the scenario 

where one is interested in the voting for the director of a neuroscience institute composed 

of psychologists, biologists, mathematicians and electrical engineers. The idea is to select 

a representative sample. How likely will the chosen sample be a fair representation of the 

community? 

Create a model such that in an urn you put a proper proportion of, purple balls 

(psychologists), green balls (biologists), blue balls (mathematicians) and white balls 

(electrical engineers). Based on varying these numbers such that they are proportionate to 

those in the community, one can produce a model that produces convincing answers with 

regards to the question about real voters. 

Consider a different scenario where it has been known in the past few years that about 5 

out of every 10,000 rats in a relevant age range contracts disease across the laboratories. 

As a person that uses rats in the laboratory you are worried about the possibility that one 

of your rats will contract the disease within the calendar year. 

Suppose you create a model with an urn containing 10,000 balls such that 5 are black 

(diseased rats) and 9,995 balls are white. Is the model enough like the real case? Would 

drawing the balls out simulate the real situation of contracting or not contracting the 

disease? What is the probability of drawing four black balls in succession? Isn’t the 

probability of contracting the disease dependent on number of factors like, lab conditions, 

veterinarians trained in rat medicine, and so on…? Have these factors been taken into 

account. 

These two scenarios highlights the fact that the probability calculations apply only to 

fictitious models on which they are based. One must always keep in mind this when 

inventing models, regardless of whether the theoretical calculations concerning the model 

mean much and apply usefully to real situations. 
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Figure 7. Slepian’s two world view on the mathematical world – real world relation. 

Facet-B is the mathematical world. It comprises of secondary quantities which do 

not correspond to physical measurement. The principal quantities correspond to 

physical measurement, but it is still a different quantity from the measured value. 
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Figure 8. Synthetic thinking to prediction-inference dilemma. 
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MODEL-REAL WORLD CONCEPT AND RESOLVING THE DILEMMA 

David Slepian (1976), one of the early pioneers in information theory at a lecture given at 

an Information Theory Symposium presented a practical more concrete account to this 

two world view. The concept is summarized as follows. 

There are two distinctly different components of a quantitative science. They are called 

facets-A and B, made of totally different stuffs. Facet-A which encompass the real world, 

is comprised of observation on the real world and manipulations of the real world. 

Numbers describing the state of the real world are derived from measuring instruments. 

They are recorded in notebooks as rational real numbers. 

Facet-B encompasses the mathematical model (Figure 7). It is comprised of the 

mathematical symbols and equations describing the model and also means for operating 

the model. Therefore when numerical values are given to some symbol, the rules for 

manipulating them prescribe numerical values for other symbols. 

A theoretician or a modeller becoming too comfortable with a model can find quantities 

within facet-B very real. One would like to think that there is an intimate relationship 

between facet-A and facet-B of a given science. For instance, under test cases the 

measured K+ conductance agree with the numerical value of the symbol
Kg . The 

modeller gets so confident that he/she starts saying for both, “the conductance of K+ 

across the membrane.” Regardless of how confident one may get, the fact is that these are 

two very different quantities. Using same name to describe them confounds this 

distinction. 

Why are these quantities distinct? The correspondence between them are incomplete and 

imprecise. This mismatch goes both ways; details from facet-A do not appear in facet-B 

and details of facet-B may not have any counterpart in facet-A. Details from facet-A like 

laboratory details (table height of the measuring instrument) are usually ignored in the 

model. This usually cause little problem in terms of the model being convincingly useful. 

Mathematical models are full of concepts, symbols and operations. Most of these details 

of facet-B have no counterpart in facet-A. This can be troublesome. With some training 

and practice one may perform mental exercises to understand and agree upon. But the 

difficulty persists and continues to perplex. This is because there is a fundamental lack of 

correspondence between the two facets. 

From a facet-A facet-B perspective the prediction-inference dilemma is resolved. This is 

because it does not try to force an agreement between the two worlds. Rather, it accepts 

the fundamental lack of correspondence between the two worlds. However that does not 

mean that a person with this perspective surrenders the mission to find a relation between 

the model and the real phenomena. 

The details within facet-B that have no counterpart in facet-A are called secondary 

quantities (Figure 7). The symbol values in facet-B that correspond with measurements in 

facet-A are called principal quantities. However as noted earlier one should always keep 
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in mind that the principal quantity and the measured quantity are not the same. It is not 

uncommon for the value of a principal quantity to be an irrational number (as result of 

mathematical operations). The measurement value is in rational real number. The 

principal quantity is made to correspond to the measurement value by simple schemes 

like round-off, k -significant digits etc. 

The presence of the secondary constructs or quantities introduces mathematical 

abstractions which makes the model tractable. For the model to be useful a necessary 

condition is that the principal quantities are insensitive to small changes in the secondary 

quantities. One would be suspicious of the model if it made one prediction when the 

value of the secondary quantity
max 0.24Kg  but made a very different prediction when 

say
max 0.23095Kg  . For the model maker the proper application of the principle of 

making principal quantities insensitive to secondary quantities is paramount to the 

robustness of the model. 

Concepts in

Psychology

Concepts in

Biology

Concepts in

Mathematics

Concepts in

Engineering

Scientific

Reduction

Model Order

Reduction

Square Law of

Computation
Facet-A vs Facet-B

World View

Errors of Commission 

and Omission

Thinking Analytic 

and Systemic

Concepts in respective disciplines. Portable Concepts.

 

Figure 9. Portable concepts are indispensable to a general systems thinker.  
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GENERAL SYSTEMS AND THE SCIENCE OF MODELLING 

Neuroscience as a product of being an interdisciplinary science has its practitioners with 

varied background. Specialized technical terms learned from years of training in their 

respective disciplines creates a major roadblock in communication and hence 

collaboration among the neuroscientists. I am of the school of thought that the role of 

computational neuroscience (also known as theoretical or mathematical neuroscience) is 

to join the disciplinary rungs of the neuroscience ladder. Joining the rungs help explain 

the behaviour of a system. Explanation of the system generally lies outside the system. 

Understanding is its product. Ackoff (1994) calls this “synthetic thinking”. 

The task of joining the rungs comes in various forms. One of them is to resolve 

confusions and conflicts like the prediction-inference dilemma. These are a side-effect of 

analytic thinking. Analysis takes apart the object of interest in the system, identify its 

behaviour and properties, and then aggregate the knowledge of the parts. Analytic 

thinking produces the knowledge, how does it work? But, this is not understanding. 

Synthetic thinking on the other hand is the opposite of analytic thinking (Figure 8). It 

identifies the containing whole of the object of interest, explain the behaviour of the 

whole, and then disaggregate the explanation of the containing whole. 

The objectives of a neuroscience system are usually not clear initially in the mind of the 

model maker. This is mostly due to the fact that in most practical cases the objectives are 

modified on the basis of better knowledge of what is available. Therefore the model 

maker requires a broad background of alternatives presented with crude evaluation. That 

is, the model maker must first put together a simplified rough model with the primary 

objective to get it "to work". Detailed consideration requires an extensive set of 

assumptions which is only justified after considerable study of the problem. 

Model design and invention or model derivation are integral tasks of a model maker. 

However they depend more on concept than quantity. A model maker with general 

system training will therefore be equipped with a set of transferrable concepts (Figure 9). 

Linvill calls this portable modelling concepts (Linvill, 1962). Portable concepts are 

necessary because of the wide technical range of system problems. The aforementioned 

concepts are all portable concepts because they are transferrable to other disciplines or 

interdisciplinary studies. It is essential for a general system theorist to accumulate 

portable concepts. 
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