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ABSTRACT  
This paper presents a game theoretical framework to analyze the possibility of knowledge 
transfer about a game structure. We study, under asymmetric awareness of two agents in 
a game, what kind of knowledge can, or cannot, be transferred from one agent who has 
more knowledge to the other agent with restricted knowledge prior to playing the game. 
Such situations are generally characterized as a particular class of a recently developed 
framework of extensive-form games with unawareness and analyzed with the solution 
concept called rationalizability. We show some properties of such games and example 
analysis. Also we discuss some ideas to incorporate, in a more general way, inferences of 
the agents about knowledge transfer under asymmetric awareness. 
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INTRODUCTION 
If I know something of which you are not aware and it is relevant to the game we play, 
then it can be my important decision problem whether I should tell about it to you. If I am 
a rational decision maker, I would decide if I transfer the knowledge to you taking into 
account the impact of the decision, that is, how the knowledge transfer can change your 
perception about the game and thus your behavior and how, as a result, such changes can 
affect the level of my benefit in the game. The present study aims at providing a formal 
framework to analyze the possibility of knowledge transfer in this kind of situation by 
regarding it as a rational choice of an agent (decision maker). 

We use game theory because it is probably the most developed formal framework for 
interactive decision-making. The standard game theory, however, is not sufficient for the 
purpose because it usually assumes common knowledge of the game structure. In other 
words, the agents are typically assumed to possess knowledge about it as much as the 
modeler does (Myerson, 1991). Although many interesting applications of 
communications among the agents under asymmetric information such as signaling 
(Spence, 1973) and cheap-talk (Crawford and Sobel, 1982) have been studied mainly in 
economics, they analyze the agents’ rational behaviors in a game with common 
knowledge: the signal or message exchanged there does not alter one’s perception about 
the game structure itself. In another line of game theoretical approach to knowledge 
transfer, there have been several studies how, in the context of knowledge management 
(e.g. Nonaka and Takeuchi, 1995), people can collaborate in creating and sharing 
knowledge (Samaddar and Kadiyala, 2006; Bandyopadhyay and Pathak, 2007; Li and 
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Jhang-Li, 2010). They regard knowledge as a sort of public goods and thus the problems 
essentially fall into public goods provisions. 

On the other hand, recently a game theoretical framework that deals with possibly 
unaware agents (e.g. Heifetz et al., 2013; Halpern and Rêgo, 2014; Schipper, 2014). 
Games with unawareness are distinguished from well-known games with incomplete 
information (Harsanyi, 1967) in that, in the former, the agents may not be able to even 
conceive of some relevant components of the game. (Hypergame theory, another game 
theoretical framework that deals with misperceptions of agents, can also formalize similar 
situations (Bennett, 1977; Wang et al., 1988; Sasaki and Kijima, 2012)). In this paper, by 
using this framework and its solution concept, we formulate and analyze the problem of 
knowledge transfer under asymmetric awareness in games. While there are many types of 
asymmetric awareness which games with unawareness can formulate, we only study a 
simple form of it in two-agent games: one agent knows the true game while the other is 
unaware of some component(s) of it, and the latter agent’s unawareness is known by the 
former agent. Then we analyze what kind of knowledge can, or cannot, be transferred 
from the agent who has more knowledge to the other agent with restricted knowledge 
prior to playing the game.  

This paper is organized as follows. Following the introduction, we first characterize such 
situations as a particular class of extensive-form games with unawareness, which we call 
knowledge transfer games. We also introduce a solution concept called rationalizability 
(in games with unawareness) to analyze them and present some general properties. Then 
we show an example analysis. After that, since we admit that the framework presented 
here is just the first step to study the problem of knowledge transfer under asymmetric 
awareness, we discuss several ideas to extend our model. All the proofs of mathematical 
propositions will be given in Appendix. 

ANALYTICAL FRAMEWORK 
The Problem Setting: Knowledge Transfer Games 

Consider a two-agent normal-form game played by agent 1 (she) and 2 (he). Suppose 
agent 1 perceives the game correctly while agent 2 is not aware of some action(s) of 
agent 1 and/or 2 himself. That is, he views a restricted game, and we suppose that he 
believes the restricted game is common knowledge. Agent 1 knows such a view of agent 
2, that is, she believes that he perceives the restricted game and believes it is common 
knowledge. In this sense, she is confident that she has more knowledge about the game 
(i.e. available actions of them) than him. Therefore it becomes her considerable choice 
prior to playing the game whether she tells him such knowledge. On the other hand, from 
agent 2’s point of view, he just believes they are playing a standard normal-form game 
with common knowledge, thus he would not have such a motivation of knowledge 
transfer (and indeed he cannot do that). (If we consider the possibility of cheating, this 
may not be the case. We will discuss this issue later.) Therefore, we only consider the 
possibility of knowledge transfer from agent 1 to 2. For this purpose, before playing the 
normal-form game, we add her choice of whether she tells something to her opponent, 
and if she does, what kind of knowledge she is going to tell him. Such a knowledge 



Knowledge Transfer as a Rational Choice 

 3 

transfer, if done, will make agent 2 aware of the new knowledge, i.e. some action(s) of 
which he was previously unaware. In this sense, it can alter his view about the game, and 
hence his behavior. Agent 1 makes a decision taking into account such a possible change 
in her opponent’s perception led by her knowledge transfer. 

Formally, such a situation can be modeled as a particular class of extensive-form games 
with unawareness (Heifetz et al., 2013; Halpern and Rêgo, 2014). Since the general 
framework is too complicated to be presented here, we formalize this class of game with 
unawareness as a “knowledge transfer game” (KT game). Let us start with the objective 
description of the game faced by the two agents. This is a normal-form game played by 
agent 1 and 2, 𝐺" = {𝐴&", 𝐴("; 𝑢&", 𝑢("}, where 𝐴, is agent i’s non-empty finite action set 
and 𝑢,": 𝐴&"×𝐴(" → ℝ is i’s real-valued utility function for 𝑖 ∈ {1,2}. As a technical 
setting, we require at least one agent’s action set contains two or more actions so that, in a 
restricted game perceived by (unaware) agent 2, the both agents have non-empty action 
sets. 

Then, a KT game based on the game 𝐺" is defined as an extensive-form game with 
unawareness as depicted in Figure 1. In the figure, there are n normal-form games, 𝐺&, 
…, 𝐺5. For every 𝑘, 𝐺7 = {𝐴&7, 𝐴(7; 𝑢&7, 𝑢(7}, where, for any 𝑖 ∈ {1,2}, 𝐴,7 ≠ 𝜙 ⊆ 𝐴," 
and 𝑢,7: 𝐴&7×𝐴(7 → ℝ. First, let us see 𝐺& in the figure. This is a normal-form game 
perceived by agent 1 when she tells her opponent nothing, which is supposed to be 
identical to 𝐺". (In order to allow for simultaneous moves in an extensive-form game, 
we follow Osborne and Rubinstein (1994, Ch. 6).) At this point, agent 1 believes agent 2 
perceives not 𝐺& but a restricted game, 𝐺(, where 𝐴&( ⊂ 𝐴&" and/or 𝐴(( ⊂ 𝐴(". That is, 
she considers he is unaware of 𝐴&( ∖ 𝐴&"  and 𝐴(( ∖ 𝐴(" . (At least one of these is 
non-empty.) In 𝐺(, we assume 𝑢,( 𝑎 = 𝑢,"(𝑎) for any 𝑎 ∈ 𝐴&(×𝐴((. 

 

Figure 1. The Structure of Knowledge Transfer Game 

In the beginning of the KT game, she chooses what kind of knowledge of which her 
opponent is unaware she tells him. She can also choose telling him nothing. Denote the 
first decision node by ℎ" and the set of her choices there by 𝐴&. Then, 𝐴& ⊆ 2ABC∖ABD×
2ACC∖ACD  and we assume (𝜙, 𝜙), which we denote 𝜙  hereafter, and at least one more 
element is included in 𝐴&. Agent 1’s choice of 𝑥 ∈ 𝐴& means that she tells 𝑥 to agent 2. 
For example, if 𝑥 = ( 𝑎& , {𝑎(})  with 𝑎& ∈ 𝐴&( ∖ 𝐴&"  and 𝑎( ∈ 𝐴(( ∖ 𝐴(" , this is 
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interpreted as her telling him, “I have 𝑎& and you have 𝑎( (of which you are unaware) 
in the game we play.” In particular, her choice of 𝜙  means she tells nothing to him. 
For any 𝑥 ∈ 𝐴&, when 𝑥 leads to a game 𝐺7, we write ℎ 𝑥 = 𝐺7, which is interpreted 
as, when she chooses 𝑥 at ℎ", then her perception about the game is 𝐺7. Denote the set 
of these normal-form games that can be given as ℎ 𝑥  for some 𝑥 ∈ 𝐴& by 𝛤&	(i.e. 
every 𝐺7 with odd-numbered 𝑘 in Figure 1). Here we assume agent 1’s knowledge 
transfer may entail some cost, that is, if she chooses any option except for 𝜙  at ℎ", she 
has to incur a non-negative cost, 𝑐 (in her utility term). Thus every 𝐺7 except for 𝐺& 
that can be reached by some 𝑥 ∈ 𝐴& has the same game structure as 𝐺" except that – 𝑐 
is added to agent 1’s utility value at every outcome. 

Each 𝐺7 in 𝛤& describes agent 1’s perception about the normal-form game they play. 
As stated above, she understands the game is 𝐺" and, when she tells her opponent 
something, it will take the cost 𝑐. On the other hand, at each game reached, her view 
about agent 2’s view can be largely different. This depends on her choice at the beginning, 
i.e., which knowledge can be transferred. We describe her perception about her 
opponent’s view with an injective function 𝑓: the fact that she believes he perceives a 
game 𝐺K, and indeed he perceives it, when she chooses 𝑥 ∈ 𝐴& at ℎ" is described as 
𝑓(ℎ(𝑥)) = 𝐺K. For instance, 𝑓(ℎ( 𝜙 )) = 𝑓(𝐺&) = 𝐺(. The dotted arrows in the figure 
express these mappings. In general, in a game 𝐺K that can be given as 𝑓(ℎ(𝑥)) with 
𝑥 = (𝑥&, 𝑥() ∈ 𝐴&, 𝐴,K = 𝐴,( ∪ 𝑥, for any 𝑖 ∈ {1,2}. Thus, we assume that, whenever she 
tells him, “I have an action 𝑎& (of which you are unaware),” she believes he will add 𝑎& 
to the action set of agent 1, and indeed he does so. The same thing goes whenever she 
refers to some action(s) of agent 2. (Thus we assume her message is always “credible.” 
For this assumption, see the discussion later.) Therefore, any two normal-form games 
obtained by a mapping by 𝑓 have different action sets with one another. Denote the set 
of all the candidates of agent 2’s perception, namely all the normal-form games that can 
be given as 𝑓(ℎ(𝑥)) with some 𝑥 ∈ 𝐴&, by 𝛤( (i.e. every 𝐺K with even-numbered 𝑙 
in Figure 1). Furthermore we assume that her knowledge transfer cost is common 
knowledge. Thus, in every 𝐺K except for 𝐺(	in 𝛤(, 𝑢&K 𝑎 = 𝑢&" 𝑎 − 𝑐 and 𝑢(K 𝑎 =
𝑢(" 𝑎  for any 𝑎 ∈ 𝐴&K ×𝐴(K . Consequently, the number of the normal-form games in the 
KT game, 𝑛 is 2|𝐴&|. 

In a game with unawareness, unlike standard games, an agent may not know the whole 
structure of the game. In a KT game, when agent 1 chooses 𝑥 ∈ 𝐴& and 𝑓(ℎ(𝑥)) = 𝐺K, 
agent 2 just considers they are playing a standard game with common knowledge, 𝐺K ∈
𝛤(. On the other hand, agent 1 is supposed to possess a view about the whole game 
structure in the same way as the modeler: she can view the whole picture of Figure 1. The 
perceptional difference is important when considering each agent’s decision making in 
the KT game. Agent 1 would make a choice at ℎ", taking into account the impact of her 
choice on agent 2’s possible perceptional change and his behavior in light of his 
perception, and then act rationally in the two-agent normal-form game. On the other hand, 
agent 2, in his point of view, would just make a choice in a standard normal-form game, 
and agent 1 knows this. 
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Solution of the Game: Rationalizability 

As a solution concept of the game with unawareness, we employ (extensive-form) 
rationalizability defined for extensive-form games with unawareness by Heifetz et al. 
(2013). Since the general definition of it is somewhat complex, we here define 
rationalizability in a KT game presented above. In Appendix, we show that our definition 
can surely be captured by their original definition. 

The concept of rationalizability was originally introduced in game theory by Pearce 
(1984). In a standard game, an agent’s rationalizable action is considered as such an 
action that can be taken when the game structure and the agents’ rationality are common 
knowledge. It is a weaker concept than Nash equilibrium since Nash equilibrium requires 
conjectures of the agents (about their choices) to be consistent while rationalizability does 
not. Hence, rationalizability in an extensive-form game with unawareness implies 
possible outcomes of the game when the agents’ rationality is common knowledge, the 
agents’ perceptions about the game structure is given as the definition of the game with 
unawareness and the play is one-shot. (For a more rigorous characterization of 
rationalizability, see Battigalli (1997); Perea (2012).) 

First, we define rationalizability for normal-form games. Consider a generic two-agent 
normal form game, 𝐺 = {𝐴&, 𝐴(; 𝑢&, 𝑢(}. For each agent i (∈ {1,2}), let 𝛥𝐴, be the set 
of probability distributions on 𝐴,. Hence 𝛿, ∈ 𝛥𝐴, can be interpreted as i’s mixed action. 
Let i’s opponent be j. We denote agent i’s expected utility when i takes 𝑎, ∈ 𝐴, and j 
takes 𝛿S ∈ 𝛥𝐴S  by 𝐸𝑢,(𝑎,, 𝛿S). Also let 𝐻, 0 = 𝐴,  and, for any positive integer 𝑡, 
𝐻, 𝑡 = {𝑎, ∈ 𝐴,|[∃𝛿S ∈ 𝛥𝐻S 𝑡 − 1 ][∀𝑎,\ ∈ 𝐻, 𝑡 − 1 , 𝐸𝑢, 𝑎,, 𝛿S ≥ 𝐸𝑢, 𝑎,\, 𝛿S ]} . 
Then 𝑎,∗ ∈ 𝐻, 𝑡_

`a"  is called agent i’s rationalizable action. It is such an action of 
agent i that can survive iterated eliminations of actions that cannot be a best response to 
the opponent’s choice under any belief of i about j’s choice. Let us denote the set of i’s 
rationalizable actions in a game 𝐺 by 𝑅,(𝐺), which is a subset of 𝐴,. It is known that, 
in general, 𝑅, 𝐺  is non-empty. Hereafter, in a KT game, we also denote agent i’s 
expected utility function in a normal-form game 𝐺7 defined as above by 𝐸𝑢,7. 

With respect to (extensive-form) rationalizability in a KT game, if agent 2 makes a 
decision according to it, then he must choose an action in 𝑅((𝐺K) in every 𝐺K ∈ 𝛤(. 
Then, knowing that, agent 1 makes a decision rationally. Since she recognizes the 
extensive-form game in which she acts multiple times, her rationalizability is defined on 
her strategies. Although, in general, an agent strategy is defined as a combination of her 
actions at every information set, we here define it simply as a combination of her choices 
at ℎ" and in the normal-form game led by the first choice there since choices in the other 
normal-form games are irrelevant when we consider the solution concept (see Appendix). 
That is, 𝑠& = (𝑥, 𝑎&) is her strategy with 𝑥 ∈ 𝐴& and 𝑎& ∈ 𝐴&7 such that ℎ 𝑥 = 𝐺7. 
Denote the set of her strategies by 𝑆&. 

Now agent 1 has a belief about how agent 2 would act in each game in 𝛤(. This is 
described as probability distributions on his (normal-form) rationalizable actions in these 
games, namely an element of 𝛥𝑅((𝐺K)ef∈gC . Denote this set of her beliefs by 𝛴(. 
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Agent 1’s strategy 𝑠& = (𝑥, 𝑎&) ∈ 𝑆& under a belief 𝜎( ∈ 𝛴( gives her expected utility 
𝐸𝑢&(𝑠&, 𝜎(), which is calculated as 𝐸𝑢,7(𝑎&, 𝛿() when ℎ 𝑥 = 𝐺7, where 𝛿( is agent 
2’s mixed action in 𝐺7, which is specified by the probability distribution on 𝑅((𝑓(𝐺7)) 
in 𝜎(. Then we call a strategy of agent 1 is rationalizable when it is a best response for 
her under some belief. Formally, 𝑠&∗ ∈ 𝑆& is her rationalizable strategy if and only if 
there exists 𝜎( ∈ 𝛴( such that 𝐸𝑢&(𝑠&∗, 𝜎() ≥ 𝐸𝑢&(𝑠&, 𝜎() for any 𝑠& ∈ 𝑆&. Denote the 
set of her (extensive-form) rationalizable strategy in the KT game by 𝑅&, which is a 
subset of 𝑆&. Since it is known that each agent has at least one rationalizable strategy in 
an extensive-form game with unawareness (Heifetz et al., 2013), we have the following 
remark on the existence of rationalizable strategies in any KT games. 

Remark 1: In a KT game, 𝑅& ≠ 𝜙 and 𝑅((𝐺K) ≠ 𝜙 for every 𝐺K ∈ 𝛤(. 

Properties of Knowledge Transfer Games 

With respect to the role of knowledge transfer cost, we have the following propositions.  

Proposition 2: In a KT game, if 𝑥∗ = 𝜙  for any 𝑥∗, 𝑎&∗ ∈ 𝑅& when the 
knowledge transfer cost is 𝑐, then the same thing holds when it increases to any 𝑐′(>
𝑐). 

Proposition 3: In a KT game, if there exists 𝑥∗ ≠ 𝜙  such that 𝑥∗, 𝑎&∗ ∈ 𝑅& 
for some 𝑎&∗ ∈ 𝐴&7, where ℎ 𝑥∗ = 𝐺7, when the knowledge transfer cost is 𝑐, then 
𝑥∗, 𝑎&∗ ∈ 𝑅& when it decreases to any 𝑐\(< 𝑐). 

The two propositions are quite intuitive. Proposition 2 claims that, when any kinds of 
knowledge transfer cannot occur in some situation, the same thing holds if its cost 
increases. Likewise, Proposition 3 says that when some kind of knowledge transfer can 
occur in some situation, it is also possible if its cost decreases. Generally, based on the 
definition of rationalizability, the condition of knowledge transfer can be restated as 
follows. 

Proposition 4: In a KT game, for 𝑥∗ ∈ 𝐴& such that ℎ 𝑥∗ = 𝐺7, there exists 
𝑎&∗ ∈ 𝐴&7 such that 𝑥∗, 𝑎&∗ ∈ 𝑅& if and only if, for any 𝐺7m ∈ 𝛤& ∖ {𝐺7}, 

max
qC∈rsC(t(eu))

(max
vB∈ABu

𝐸𝑢&7(𝑎&, 𝛿()) ≥ min
qC∈rsC(t(eu

m))
( max
vB∈ABu

m
𝐸𝑢&7

m(𝑎&, 𝛿()). 

That is, it is rationalizable for agent 1 to choose 𝑥 ∈ 𝐴& at ℎ" if and only if, given that 
agent 2 will choose his rationalizable action in each 𝐺K ∈ 𝛤(, the maximum value of her 
expected utility when she takes a best response in ℎ 𝑥  under any belief is higher than 
or at least equal to the minimum value of that in any normal-form games in 𝛤& other 
than ℎ 𝑥 . Thus, based on the statement, we can check if a transfer of particular 
knowledge 𝑥 ∈ 𝐴& can take place. (If 𝑥 = [𝜙], we can check if not telling anything can 
be rationalizable.) Then the next proposition follows Proposition 4 straightforwardly. It 
states that if agent 1 makes a decision at ℎ" according to the max-min principle (given 
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that her opponent will always choose his rationalizable action), the choice is always 
rationalizable. That is, it is rational for her to make a decision at first so that she 
maximizes the minimum value of her expected utility when she takes a best response 
under any belief in the subsequent normal-form game. 

Proposition 5: In a KT game, for 𝑥∗ ∈ 𝐴& such that ℎ 𝑥∗ = 𝐺7, there exists 
𝑎&∗ ∈ 𝐴&7 such that 𝑥∗, 𝑎&∗ ∈ 𝑅& if, for any 𝐺7m ∈ 𝛤& ∖ {𝐺7},  

min
qC∈rsC(t(eu))

(max
vB∈ABu

𝐸𝑢&7(𝑎&, 𝛿()) ≥ min
qC∈rsC(t(eu

m))
( max
vB∈ABu

m
𝐸𝑢&7

m(𝑎&, 𝛿()). 

EXAMPLE ANALYSIS 
We use a variant of Bach-Stravinsky-Mozart game studied in Heifetz et al. (2013), which 
is an extension of so-called battle-of-the-sexes game. Consider the following situation, 
which we formulate as a KT game of Figure 2. Two agents, 1 (she) and 2 (he), 
independently make decisions about which concert they go to. There are three concerts, 
Bach (B), Stravinsky (S) and Mozart (M), and their utilities are illustrated in the upper 
left matrix (𝐺&). If they both go to the Mozart concert, it is a Nash equilibrium which is 
Pareto-optimal outcome of the game, but now suppose only agent 1 is aware of Mozart 
while agent 2 is unaware of it and considers there will be only two concerts, Bach and 
Stravinsky. Agent 1 knows such a restricted perception of agent 2, which is described as 
the lower left matrix (𝐺(). Thus if she does not tell about the Mozart concert, which we 
denote [𝜙], she views the game is 𝐺& while she believes he views 𝐺(. Before 
their choices of concerts, she can also tell him the existence of the Mozart concert, which 
we denote [𝑀], with cost 𝑐 ≥ 0. Thus, when she does so, her perception of the game 
becomes the upper right matrix (𝐺z). In this case, agent 2’s view contains all the three 
concerts and reflects the knowledge transfer cost of agent 1, therefore it can be expressed 
as the lower right matrix (𝐺{). 

 

Figure 2. Bach-Stravinsky-Mozart Game 
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In this KT game, 𝑅( 𝐺( = {𝐵, 𝑆} and 𝑅( 𝐺{ = {𝑀}, hence, according to 
rationalizability, agent 2 choose these actions. In this case, his choice is irrelevant to 
agent 1’s knowledge transfer cost because going to the Mozart concert is his dominant 
action in 𝐺{. On the other hand, agent 1’s rationalizable strategy depends on the cost 
and the set of it is calculated as follows. First, when 𝑐 < 1, 𝑅& = {( 𝑀 ,𝑀)}. In this 
case, since agent 1 has probability-one belief that agent 2 would choose Mozart in 𝐺z, 
it is her dominant strategy to tell about the Mozart concert first and choose it. Second, 
when 1 ≤ 𝑐 < 3, 𝑅& = { 𝜙 , 𝐵 , 𝑀 ,𝑀 }. In this case, depending on her belief on 
𝑅( 𝐺( , there are two rationalizable strategies of agent 1: not telling about the Mozart 
concert and going to Bach, and telling it and going to Mozart. The former is rational 
when she believes her opponent will choose Bach with at least (4 − 𝑐)/3 
probability in 𝐺&, while the latter is rational when she believes her opponent will 
choose Stravinsky with at least (𝑐 − 1)/3 probability in 𝐺&. Third, when 3 ≤
𝑐 ≤ 10/3, 𝑅& = { 𝜙 , 𝐵 , 𝜙 , 𝑆 , 𝑀 ,𝑀 }. In this case, in addition to the two 
strategies in the previous case, not telling about the Mozart concert and going to 
Stravinsky can also be rationalizable under some belief. Finally, when 10/3 < 𝑐, 
𝑅& = { 𝜙 , 𝐵 , 𝜙 , 𝑆 }. In this case, under any belief, telling about the Mozart concert 
cannot be a part of a rationalizable strategy. Although she perceives 𝐺&, her inference 
is essentially same as that in a standard battle-of-the-sexes game. 

To sum up, from the viewpoint of knowledge transfer, when its costs is sufficiently low, 
only telling about the Mozart concert is rationalizable, while when the cost is sufficiently 
high, only not telling can be rationalizable. There is also a middle range of it, where both 
telling and not telling can be rationalizable. Thus Proposition 2 and 3 can be confirmed 
by these facts. Furthermore, in the middle range, the set of agent 1’s possible choices 
when she chooses not telling is different: when the cost is relatively low, she only 
chooses Bach in 𝐺& (i.e. the second case above), while when it is relatively high, she 
may choose both Bach and Stravinsky there (i.e. the third case above). As for the 
implications of Proposition 4 and 5, in 𝐺&, the maximum and minimum values of agent 
1’s expected utility when she takes a best response under any belief are 3 and 3/4, 
respectively, while both the maximum and the minimum are 4 − 𝑐 in 𝐺z. Based on 
these values, the reader can see the propositions hold here. 

DISCUSSIONS 
The framework of KT games introduced in this paper can be extended in several ways. 
We consider the model and analysis presented above are just the first step to study 
knowledge transfer under asymmetric awareness in games. This section shows some 
ideas of possible extensions as the concluding remarks of this paper. 

Credibility of Knowledge Transfer and the Possibility of Cheating 

The framework presented above assumed that whenever agent 1 tells some knowledge to 
agent 2, he believes her message is true: it is always credible for him. It, however, may 
not be reasonable in some situations. Consider the following example, which is a variant 
of the Bach-Stravinsky-Mozart game above. Now the objective situation is the left matrix 
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in Figure 3, which is also agent 1’s view. The Mozart concert is only available to her. 
Agent 2 is unaware of it and just sees the standard battle-of-the-sexes game, the right 
matrix, and agent 1 knows his unawareness of Mozart. Then it is her choice whether or 
not she tells about it to him. The problem here is the credibility of the message when she 
does so. If she tells him, “I have another option of which you are not aware, the Mozart 
concert,” how would he interpret this? 

 

Figure 3. A Variant of the Bach-Stravinsky-Mozart Game 

Our answer is that it is far from clear whether or not he will update his view from the 
right matrix to the left one. In the left game, Mozart strictly dominates Stravinsky for 
agent 1, thus she would not choose Stravinsky. Given this perspective (i.e. if we eliminate 
agent 1’s Stravinsky), going to the Stravinsky concert is weakly dominated for agent 2. 
Hence it would be more plausible that he will choose Bach (though Stravinsky is also 
rationalizable), then agent 1 will be able to achieve the best outcome for her by choosing 
Bach as well. Based on this kind of inference, agent 2 might consider that his opponent is 
possibly cheating, that is, the Mozart concert is actually not available to her, so that she 
will get the best payoff for her. Thus the credibility of such a message is non-trivial. 
(Feinberg (2008) also discusses this issue with a similar example.) Such a problem can 
often be seen in the real world as well. For example, in a war between two countries, 
what if one of them declares, “We now have a new weapon”? It would not be clear if the 
message can immediately be accepted by the other side.  

Furthermore, based on this example, we can think of another problem, the possibility of 
agent 1’s strategic cheating. Now suppose the objective situation is just the standard 
battle-of-the-sexes game, and agent 1 understands this: the Mozart concert is indeed not 
available to her. But if she successfully convinces agent 2 to believe the game is the left 
matrix of Figure 3, she can avoid the coordination problem and achieve the best result for 
her. Though it is not clear that telling such a lie, namely saying, “I have actually one 
more option,” is credible for her opponent as discussed above, it might become her 
considerable choice. (Hämäläinen (1981) discusses the possibility of cheating of the leader 
in a Stackelberg game, though it is not cheating on the game structure itself.) 

Scope of Agent 2’s Inference  

We assumed that agent 2 believes he just plays a standard normal-form game against 
agent 1 in any cases. This would be natural when no knowledge is transferred. But once 
he is notified that there is some knowledge of which he was previously not aware, he may 
consider the reason why his opponent has told that to him. That is, he may consider, just 
as our (the modeler’s) point of view, her telling the knowledge is as a result of her 
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rational choice. If this is the case, his perception about the game structure is no longer 
just a normal-form game. He also has to take into account agent 1’s reasoning about how 
he would have behaved if she did not tell the knowledge, for instance. Thus he would 
notice that he is now at some information set in an extensive-form game with 
unawareness. In the case of the Bach-Stravinsky-Mozart game, he might be able to 
consider agent 1’s reasoning in the case of 𝐺& and 𝐺(. In this case, this does not 
affect the result mentioned above because once he is notified about the Mozart concert, 
choosing it is his dominant strategy. But, in general, such an extension of the scope of 
agent 2’s inference can lead to change in his rationalizable behavior due to the nature of 
extensive-form rationalizability: it deals with an agent’s forward induction. Also, if agent 
1 knows this, then her rationalizable strategies can also be different. But, even in such 
cases, agent 2 cannot infer anything that contains some knowledge of which he is still 
unaware. Thus, the extended scope depends on what knowledge is transferred at first. 
Taking into account these things generally in KT games would be a challenging task if 
we seriously consider agent 2’s scope of inference, though it may result in a very 
complex form of extensive-form game with unawareness. 

Other Types of Asymmetric Awareness and Knowledge Transfer under Them 

It is the basic assumption of KT games above that agent 1 correctly perceives the 
objective game while agent 2 is unaware of something and his unawareness is a part of 
agent 1’s view. This is only a particular class of asymmetric awareness in two-person 
games. In general, the framework of games with unawareness allows us to deal with 
infinite hierarchies of perceptions. Thus, for example we can describe such a situation 
that, in the Bach-Stravinsky-Mozart game, agent 2 actually perceives the objective game 
correctly and furthermore knows agent 1’s belief about his unawareness, that is, he 
considers that the true game is 𝐺&, she also views 𝐺& and she believes he believes 
𝐺( is common knowledge. Since he now believes he has some knowledge that he 
believes she does not have, he may also be motivated to tell something to her, e.g., “I 
know there is the Mozart concert.” Unlike the game of Figure 3 discussed above, this 
message of agent 2 must be credible for agent 1. (See Feinberg (2008) in which he studies 
this issue.) In this case, the situation becomes much more complicated because the both 
agents may be willing to tell something to each other. Therefore, in order to deal with 
other types of asymmetric awareness and knowledge transfer under them, it becomes 
necessary to identify what kind of communication can take place prior to playing the 
game and its influence to the agents’ perceptions, which also would be a non-trivial task. 

Furthermore, an agent can be aware of unawareness of herself. That is, she may notice 
that she might be unaware of something which she cannot identify. Games with 
unawareness have been extended to incorporate such awareness of unawareness (Heifetz 
et al., 2013; Halpern and Rêgo, 2014). Now consider the following situation. Agent 1 
believes it is common knowledge that there is the Mozart concert, that is, 𝐺& in Figure 2 
is common knowledge, while agent 2 believes 𝐺( is common knowledge. In this case, 
agent 1 would not be motivated to tell her opponent the fact that there is the Mozart 
concert since she believes he already knows it. Now, if agent 2 considers that 𝐺( might 
not be common knowledge and his opponent may know something of which he is 
unaware, what would he do? For instance, he might ask agent 1, “To my knowledge, 



Knowledge Transfer as a Rational Choice 

 11 

there are concerts of Bach and Stravinsky, but do you know any other?” Then this 
question would be a surprise to her because she has considered he knows Mozart. But, 
anyway, she would be willing to tell him about the Mozart concert because the 
knowledge transfer can possibly lead to the Pareto-optimal outcome, where they both 
choose Mozart. Modeling this type of communication based on awareness of 
unawareness may result in a more complicated task, though it would be a challenging 
future work. (In systems science, the notion of systems intelligence refers to this kind of 
systemic feedback loops initiated by an agent having awareness of unawareness. See e.g. 
Hämäläinen and Saarinen (2006); Sasaki et al. (2014).) 

 

APPENDIX 
Our Definition of Rationalizability and Its Relation to Conventional Studies 

We show that our definition of (extensive-form) rationalizability is equivalent to that 
defined originally by Heifetz et al. (2013). (We do not show the detail of their definition 
here because it is too lengthy.) In their model, each agent’s strategy is defined as a 
combination of her actions at every information set she can perceive along some path in 
the game. Therefore, in a KT game, agent 1’s strategy set is 𝐴&× 𝐴&77∈{7m|eum∈gB} ×

𝐴&KK∈{Km|efm∈gC}  while that of agent 2 is 𝐴(KK∈{Km|efm∈gC} . Each agent’s rationalizable 
strategy is defined on the strategy set. It can be easily shown that the set of agent 2’s 
rationalizable strategies is 𝑅((𝐺K)ef∈gC  since the process of iterated elimination of 
never-best-response strategies implies iterated elimination of never-best-response actions 
in each game in 𝛤(, which means calculating (normal-form) rationalizability in these 
games. Thus it is equivalent to our setting that he just chooses his rationalizable action in 
every 𝐺K ∈ 𝛤(. 

On the other hand, as for agent 1’s rationalizable strategy, the following two statements 
are equivalent for 𝑠&∗ = (𝑥∗, 𝑎&∗) ∈ 𝑆&: (i) 𝑠&∗ is her rationalizable strategy in our 
sense (i.e. 𝑠&∗ ∈ 𝑅&); (ii) any strategies of agent 1 in 𝑥∗ ×{𝑎&∗}×

𝐴&77∈{7m|eum∈gB∧eum��(�)} × 𝐴&KK∈{Km|efm∈gC} , which we denote 𝑅&(𝑠&∗) , are 
rationalizable for her in the conventional sense. That is, in the conventional definition of 
rationalizability, she can choose any action at each information set other than ℎ" and 
the normal-form game led by the first choice. The equivalence can be shown by the 
following argument. Suppose 𝑠&∗ ∈ 𝑅&. This means, by definition, there exists 𝜎( ∈ 𝛴( 
such that 𝐸𝑢&(𝑠&∗, 𝜎() ≥ 𝐸𝑢&(𝑠&, 𝜎() for any 𝑠& ∈ 𝑆&. Thus, when she takes any strategy 
in 𝑅&(𝑠&∗), she is sequentially rational at every information set under such a belief 𝜎(. 
Then such a strategy can survive the process of iterated elimination because agent 2’s 
strategies cannot be eliminated any more as 𝜎( only assigns probabilities to his 
actions included in his rationalizable strategy. Therefore it is her rationalizable strategy in 
the conventional sense. The converse can also be shown similarly. Hence our definition 
of rationalizability in KT games surely has the same spirit of it original definition. 
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Proof of Proposition 2 

In a KT game, suppose 𝑥∗ = 𝜙  for any 𝑥∗, 𝑎&∗ ∈ 𝑅& and the knowledge 
transfer cost is 𝑐. When the cost increases to 𝑐′(> 𝑐), denote agent 1’s expected 
utility function by 𝐸𝑢&K  in any 𝐺K ∈ 𝛤(. In 𝐺(, 𝐸𝑢&( 𝑎&, 𝛿( = 𝐸𝑢&((𝑎&, 𝛿() 
for any 𝑎& ∈ 𝐴&( and 𝛿( ∈ 𝛥𝐴((, while, in any 𝐺K ∈ 𝛤( ∖ {𝐺(}, 𝐸𝑢&K 𝑎&, 𝛿( =
𝐸𝑢&K 𝑎&, 𝛿( − (𝑐\ − 𝑐) for any 𝑎& ∈ 𝐴&K  and 𝛿( ∈ 𝛥𝐴(K . Therefore, in any 
𝐺K ∈ 𝛤(, the set of agent 2’s (normal-form) rationalizable actions does not change even 
when the cost increase occurs. Then, denote also her expected utility function in the 
extensive-form game which consists of ℎ" and 𝛤& by 𝐸𝑢& under the 
increased cost 𝑐′. Whenever she chooses 𝑥 ∈ 𝐴& other than 𝜙  at ℎ", 
𝐸𝑢& 𝑠&, 𝜎( = 𝐸𝑢& 𝑠&, 𝜎( − (𝑐\ − 𝑐) for any 𝜎( ∈ 𝛴(. (Note that 𝛴( does not 
change by the cost increase since agent 2’s rationalizable actions does not change.) Thus, 
𝑥∗ = 𝜙  for any 𝑥∗, 𝑎&∗ ∈ 𝑅& under the increased cost as well. Hence the 
proposition holds. 

Proof of Proposition 3 

In a KT game, suppose there exists 𝑥∗ ≠ 𝜙  such that 𝑥∗, 𝑎&∗ ∈ 𝑅& for some 
𝑎&∗ ∈ 𝐴&7, where ℎ 𝑥∗ = 𝐺7, and the knowledge transfer cost is 𝑐. In a similar way 
as in the proof of Proposition 2, it can be shown that, in any 𝐺K ∈ 𝛤(, the set of agent 
2’s (normal-form) rationalizable actions does not change when the knowledge transfer 
cost decreases to 𝑐\(< 𝑐). Then, whenever agent 1 chooses 𝑥 ∈ 𝐴& other than 
𝜙  at ℎ", 𝐸𝑢& 𝑠&, 𝜎( = 𝐸𝑢& 𝑠&, 𝜎( − (𝑐\ − 𝑐) for any 𝜎( ∈ 𝛴(, where 
𝐸𝑢& is defined in the same way as above. Thus, 𝑥∗, 𝑎&∗ ∈ 𝑅& under the decreased 
cost as well. Hence the proposition holds. 

Proof of Proposition 4 

In a KT game, for 𝑥∗ ∈ 𝐴& such that ℎ 𝑥∗ = 𝐺7, suppose there exists 𝑎&∗ ∈ 𝐴&7 
such that 𝑠&∗ = 𝑥∗, 𝑎&∗ ∈ 𝑅&. By definition, this means that there exists 𝜎( ∈ 𝛴( such 
that 𝐸𝑢&(𝑠&∗, 𝜎() ≥ 𝐸𝑢&(𝑠&, 𝜎()  for any 𝑠& ∈ 𝑆& . Let us denote, for any 𝐺K ∈ 𝛤& , 

max
qC∈rsC(t(ef))

(max
vB∈ABf

𝐸𝑢&K (𝑎&, 𝛿())  and min
qC∈rsC(t(ef))

(max
vB∈ABf

𝐸𝑢&K (𝑎&, 𝛿())  by max(𝐺K)  and 

min(𝐺K) , respectively. Now assume that there exists 𝐺7m ∈ 𝛤& ∖ {𝐺7}  such that 
max(𝐺7) < min(𝐺7m). Let ℎ 𝑥′ = 𝐺7m. Then, for any 𝜎( ∈ 𝛴(, 𝐸𝑢& 𝑠&∗, 𝜎( ≤
max(𝐺7) and there exists 𝑎&\ ∈ 𝐴&7

m such that min(𝐺7m) ≤ 𝐸𝑢&((𝑥\, 𝑎&\ ), 𝜎(). 
Thus, 𝐸𝑢& 𝑠&∗, 𝜎( < 𝐸𝑢&((𝑥\, 𝑎&\ ), 𝜎(). But this contradicts the definition above. 
Hence max(𝐺7) ≥ min(𝐺7m) for any 𝐺7m ∈ 𝛤& ∖ {𝐺7}. 

Conversely, suppose that, for any 𝐺7m ∈ 𝛤& ∖ {𝐺7}, max(𝐺7) ≥ min(𝐺7m). Denote, 
for any 𝐺K ∈ 𝛤&, the argument of max(𝐺K) by argmax(𝐺K). Likewise, argmin(𝐺K) is 
defined. Now consider a belief 𝜎( ∈ argmax 𝐺7 × argmin(𝐺7m)eum∈gB∖ eu (⊆ 𝛴() 
and agent 1’s strategy 𝑠&∗ = 𝑥∗, 𝑎&∗ ∈ 𝑆&, where 𝑎&∗ ∈ argmax

vB∈ABu
𝐸𝑢&7(𝑎&, 𝛿() in 
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which the non-zero probabilities assigned by 𝛿( ∈ 𝛥𝐴(7 is equal to the probabilities 
on 𝑅((𝑓(𝐺7))	specified in 𝜎(. Then 𝐸𝑢&(𝑠&∗, 𝜎() ≥ 𝐸𝑢&( 𝑥∗, 𝑎& , 𝜎() for any 
𝑎& ∈ 𝐴&7 due to the definition of 𝑎&∗. Also 𝐸𝑢&(𝑠&∗, 𝜎() ≥ 𝐸𝑢&( 𝑥, 𝑎& , 𝜎() for 
any 𝑥 ∈ 𝐴& ∖ {𝑥∗} and 𝑎& ∈ 𝐴&7

m when ℎ 𝑥 = 𝐺7m because the right-hand 
side is equal to max(𝐺7) and the left-hand side is not greater than min(𝐺7m) 
when ℎ 𝑥 = 𝐺7m. To sum up, 𝐸𝑢&(𝑠&∗, 𝜎() ≥ 𝐸𝑢&(𝑠&, 𝜎() for any 𝑠& ∈ 𝑆&, which 
means 𝑠&∗ ∈ 𝑅&. Hence the proposition holds. 

Proof of Proposition 5 

In a KT game, max 𝐺K ≥ min 𝐺K  in any 𝐺K ∈ 𝛤&, where max 𝐺K  and 
min 𝐺K  are defined in the same way as in the proof of Proposition 4. Thus, for 𝑥∗ ∈
𝐴& such that ℎ 𝑥∗ = 𝐺7, if min(𝐺7) ≥ min(𝐺7m) for any 𝐺7m ∈ 𝛤& ∖ {𝐺7}, 
then max(𝐺7) ≥ min(𝐺7m) for any 𝐺7m ∈ 𝛤& ∖ {𝐺7}. Due to Proposition 4, this 
implies there exists 𝑎&∗ ∈ 𝐴&7 such that 𝑥∗, 𝑎&∗ ∈ 𝑅&. Hence the proposition holds. 
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