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     Abstract 
Recently, electric controllers that use the model-based control of modern control theory 

have had frequent failures and become a problem for industry. This is due to the fact that 
the control gain is fixed. To address this problem, we have developed the first intelligent 
controller incorporating intelligent robust design using next-generation fuzzy neural 
network-based control, which presents the only solution to the problem. This controller 
includes a new kind of intelligent robust gain compensator that adaptively adjusts gain to 
changes in target trajectory error for sufficient control against system parameter variations, 
sudden disturbance, and  
target changes. 
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1. Introduction 

In general, system design for manipulators regards the controlled object as a 

single-degree-of-freedom system even in a multi-degree-of-freedom system, and an 

approximate equation is used to design the control system. A method that builds an independent 

control system for each joint axis is employed for numerous products. However, in most cases 

rigidity is weak and the nonlinear multi-input, multi-output system is subject to gravity and 

centrifugal force. In addition, conventional methods achieve precision, vibration suppression, 

and robustness by utilizing PID control, phase compensation control, optimal servo systems, 

disturbance observer-based systems, or �∞ control systems. Sufficient control, however, 
currently cannot be obtained. On the other hand, related research both in Japan and abroad have 

achieved robust control systems using an observer when disturbance is pronounced, such as 

with centrifugal force, gravity, and coulomb friction, but they remain unsatisfactory. In industry, 

the impact of sudden disturbance cannot be coped with because gain is fixed, and failures have 

become an issue. Therefore, a next-generation intelligent robust control method is strongly 

desired. An embedded intelligent controller incorporates a new type of intelligent robust gain 

compensator (fuzzy neural-based control) that adaptively adjusts gain to variations in target 
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trajectory error, and acquires sufficient target trajectory follow-up control capability against 

system parameter variations, disturbance, and target changes. To build a control system that 

allows robust, automatic gain adjustments, we built a control system that establishes variable 

feedback gain in response to positional error in space segmentalized with fuzzy partitioning. 

The control system is configured as a double-degree-of-freedom system and the feed-forward 

component is built using a neural network. Plant dynamics are learned through the parameters 

of displacement, velocity, and acceleration to obtain the inverse dynamics of the plant and 

linearize the system. In addition, the feedback component acts as a compensator that reduces 

nonlinear error by using a fuzzy neural network to achieve perfect tracking capability. These 

control systems are run in real-time processing (sampling time: 1msec). 

 
2. Intelligent Robust Control Scheme 

The proposed multi-variables robust fuzzy neural network (FNN) based control      
scheme consists of three elements: a) the feed forward compensation which has 
inverse dynamics of the PD controlled plant based on neural networks; and b) the 
nonlinear deviation compensator based on the fuzzy neural networks. The block 
diagram of the proposed control system is shown in Fig. 1. This control system is a 
two degree-of-freedom system, which permits us to design the tracking 
characteristic for the desired input and the closed loop characteristic for the 
disturbances separately. Its aim is the complete tracking for the desired input and 
the perfect removal of the effect of disturbances. Moreover, it decreases the 
modeling error and the tracking error generated by intermittent disturbances. This 
control system would do the groundwork for the robust-control system against the 
nonlinear characteristics such as friction, variations of load and system parameters, 
and unknown disturbances in mechatronic position servo system.Block diagram of 
F-N robust control shown in Fig. 2. 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Block diagram of Multi-Variables fuzzy neural network based 
control systems 
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                    Fig. 2 Block diagram of FN robust control 
 
2.1  Feedforward Compensation Based on Neural Networks 
 
By ignoring nonlinear characteristics, the plant can be liberalized as follow: 

                 (1) 

Where u(t) is the input, y(t) is the output of the position, kp and kv are the position 

and velocity 
feedback gains respectively. The inverse dynamics of the plant is represented by 

                    (2) 

Where r(t) is the desired position. This model expresses the basic characteristics of a 

positioning servo system. But the actual model has differences in the values of the 

inertial moment, and has the nonlinear element that cannot be represented by the 

second order model. It is evident that the inverse dynamics given by (2) include the 

modeling error. However, a learning of inverse dynamics of actual servo system is 

executed through the neural networks (NN)shown in Fig. 3. The neural networks 

consist of 3 layers, 3 inputs, 4 intermediate units, and 1 output. The learning is done 

by the back propagation method using the positions of input and output and their 

time derivatives. After the learning, it is expected that the responsibility of the 

system rises through feed forward (FF)input of this network. 
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             Fig. 3 Feed forward neural network compensator 

 
2.2  Robust on Fuzzy Neural Networks 

 
The deviation between the desired position and the output position is caused by 

the modeling error and unknown disturbances. The nonlinear deviation 
compensator based on the fuzzy neural networks reduces the deviation adaptively. 
A scheme of the  
fuzzy neural network is shown in Fig. 4(1). This fuzzy neural network is 2 inputs, 1 
output and 4 layers; A is input layer; B and C are middle layers; and D is output layer. 
Each element of B layer generates an output of a membership function formed by a 
gauss function as shown in Fig. 4(2), and this part is called a premise. C layer 
outputs an adaptation that is reasoned based on the fuzzy rule, and this part is 
called a consequent.  According to the structure of the neural networks with the 
fuzzy rule, this is called fuzzy neural networks. The fuzzy neural networks can be 
applied learning by the back propagation (BP) method and be related to the fuzzy 
reasoning rule by the devisal of the connection of the layered neural network.  
This system is composed of an F-NN which has 2 inputs, 1 output, and 4 layers. The 
input has a position error ep and a velocity error ev. The input is the direct input of 
the plant. The fuzzy part divides (division into 9) the input space, and then 
generates adaptation: 

i=1, 2,…,9,i1,i2=1,2,3             (3) 
Adaptation is normalized as follows: 

                           (4) 

The fuzzy rule for No.1 is as follows: 

Ri: IF ep is and ev is THEN y=fi(epev)             (5) 
 

 



  
Intell igent Controller Embedded Intell igent Robust Design  

 5 

And the reasoning is given by: 
                                         (6) 

 is assumed as: 
                           (7) 

But  is a gain, as shown in Table 2: 
       Both ep and ev are small: PID control 
       ep is not small, ep is different from ev: P control 
       (When | ep | is big, the speed feedback which makes the value of kipep small is 
removed) For the left cases, this Neural Network learns gain in the following Neural 
Network in order to generate PD control. 
 
By this composition, additional control rule can be constructed. In addition, this 
control rule is adapted to error. Neural Network learns the control gain. 
 
The learning is performed under the condition that the square of the position error 
becomes the smallest. And then,  
 

                           (8) 
                    (9) 

And then,  is settled in order to get the following expression: 
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Fig. 4  Fuzzy-neural network nonlinear deviation compensator 
 

And the renewal quantity is calculated as follows: 

                                    (10) 

 

 

j=I,p,v 

Where wi is a connection weight. The connection weights are learned by the BP 
method, in which initial values are set zero. The teaching data in the learning are the 
input and output of a PD controller, which is the same block diagram given by Fig. 
4(4) on condition that the nonlinear deviation compensator is changed to the PD 
compensator. The proportional and differential gains are adjusted such that the 
output position follows the desired feasibly.  

 Fig. 5 FN-GS gain controller C(s) is calculated as follows: 

                       (11) 
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For this reason, in the multidimensional case, the inverse dynamic model portion of 
the control law is called a linearizing and decoupling control law. Basic scheme, 
partitioning the control law into a inverse dynamic model portion and a servo portion. 
               F=αF’+β                                        (12) 
Where, for a system of n degrees of freedom, F, F’, and β are n x 1 vectors and α is 
an n x n matrix.  

αF’: a servo portion (FB-FN) 
α: decouple the n equations of motion n x n matrix 
β: a inverse dynamic model portion (FF-NN) 

 
                                          (13) 
 

                        (14) 
 
It is possible to adaptive gain that will critically damp the response to disturbances for all 

configurations. 

 

After learning, the adaptation plays a role as the dynamic compensator, and the 
output adapted to position and velocity errors is obtained. This means that a 
compensation output is suitable to errors is computed. Hence, it is expected that 
proposed fuzzy neural network based control system is robust for the disturbances 
and the parameter variations.  
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Fig. 5 Block diagram of F-N controller 
 

3. Implementation of the intelligent controller 
3.1 System configuration 

The system configuration that implements the intelligent robust function for 
the embedded computer is as follows. It is shown in Fig. 6. 

1) System development tool 
2) Embedded computer 
3) DC motor-driven table shifter 

 
3.2 Main specifications for each component 

1) System development tool 
   MATLUB/SIMULINK/Real-Time-Workshop 
2) Embedded computer 
   RT Linux OS 

3)  DC motor-driven table shifter 
a) DC Motor: DC12V, 160mA, 4400rpm 

 

ev Table 1 
Control 
rules 

Positive 
big 

Small Negative 
big 

Positive 
big 

P PD P 

Small PD PID PD 

 
ep 

Negative 
big 

P PD P 
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b) Rotary Encoder: 8-pulse output/rotation 

c) Motor Driver: TA7281P 

 

 
 
 
 
 
 
 
 
 
 
         Fig. 6 External view of the developed intelligent controller system 

 
4.  Experiment 

4.1 Experiment Method 

An FNN control system was built using MATLAB/Simulink. The controlled object was the 

moveable table shifted by the DC motor drive. Position was controlled using the built control 

system. The command signal used a 30(s)-cycle sine wave of amplitude 5, and the motor was 

controlled with a sampling time of 1msec. 

    In addition, for purposes of comparison 3 control systems were run with and without 

disturbance, and a performance comparison was conducted. Disturbance was reproduced in the 

model, and after being run for 10sec., a manipulated variable of +5 was added. 

 
1) PID control 

 Fig. 7 shows a model diagram of PID control. PID parameters for motor control were a 

proportional gain of P=12, integral gain of I=0, and a differential gain of D=0. 
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   Fig. 7 Model diagram of PID control 

 
 2) NN-PID control 

Fig. 8 shows a model diagram of NN-PID control. NN learning is carried out based on PID 

control data. Command signal displacement, velocity, and acceleration are input and the PID 

manipulated variable is learned as the instruction signal using the BP method. The NN obtained 

this way is fed forward to the PID manipulated variable. PID parameters are identical to PID 

control. 
 
 
 
 
 
 
 
 
 
 
 

       Fig. 8 Model diagram of NN-PID control 
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3) FNN control 

 Fig. 9 shows a model diagram of FNN control. FNN learning is based on PID control data. 

Displacement error and velocity error are input and the PID manipulated variable is learned as 

the instruction signal using a combination of the BP method and the least-square method. 

 

      
 
 
 
 
 
 

 
         Fig. 9  Model diagram of FNN control 

   
      4.2 Experiment Results 

        1) Experiment results without disturbance 

 Fig. 10, Fig. 11, and Fig. 12 show a graph of experiment results for PID control, NN-PID 

control, and FNN control. The graph reveals that PID control had a time delay in response to the 

command signal, which appears as an error. NN-PID and FNN control accurately followed the 

command signal and had an error of nearly 0. 

 
 
 
 
 
 
 
 
 
 
 

   Fig. 10 Experiment results for PID control 

   
 
 

 

 

Time(sec) 
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Fig. 11 Experiment results for NN-PID control 

 
 
        
 
 
 
 
 
 
 
 
 
 

   Fig. 12  Experiment results for FNN control 

  
 

          2) Experiment results with disturbance 

         Fig. 13, Fig. 14, and Fig. 15 show a graph of experiment results for PID control, NN-PID 

control, and FNN control. The graph reveals that for PID control, error shifted in a negative 
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direction after disturbance. In NN-PID control, error appears as a steady-state deviation after 

disturbance. In FNN control, there was almost no change even after disturbance, resulting in 

error close to 0. 

          
 
 
 
 
 
 
 
 
 
 
 
       Fig. 13  Experiment results for PID control (with disturbance) 

 
 

          
 
 
 
 
 
 
 
 

        Fig. 14  Experiment results for NN-PID control (with disturbance) 
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        Fig. 15  Experiment results for FNN control (with disturbance) 

 
    5.  Results 

    PID control had a time delay even in the position control of a single-degree-of-freedom system 

and some errors were seen, but the time delay was eliminated using NN feed-forward 

compensation. Therefore, it is believed that NN can respond to nonlinear factors of the 

controlled object. However, because error appears as a steady-state deviation when a 

disturbance occurs, NN lacks robustness and is insufficient. 
FNN control followed command signals both in the absence and presence of disturbance, 

therefore it is believed that it adaptively adjusts to control gain. Thus, FNN control is a control 

method with robustness and is effective for disturbance and nonlinear factors in control 

instruments. 
As shown above, we have developed an intelligent controller incorporating a next-generation 

intelligent robust design using fuzzy neural network-based control, the only solution to the 

failure of electric controllers that use the model-based controllers of modern control theory, 

which have become problematic in industry. 
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