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ABSTRACT 

This paper proposes a robust multivariable control design by intelligent control that uses a 
fuzzy neural network by producing robustness capable of automatically controlling gain against a 
conventional, fixed PID control system. This structural feature of the proposed controller forms a 
nonlinear deviation compensator using fuzzy neural networks. Therefore, in multidimensionality 
the inverse dynamic model portion of the control law is referred to as a linearizing and 
decoupling control law. This method uses a control law where parameter response leads to 
critical damping and adaptive changes in gain according to time, making it possible to decouple 
mutual interference in each multivariable system.       
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INTRODUCTION 
 

In general, system design for manipulators regards the controlled object as a single-degree-of-freedom 
system even in a multi-degree-of-freedom system, and an approximate equation is used to design the 
control system. A method that constructs an independent control system for each joint axis is employed 
for numerous products. However, in most cases rigidity is weak and the nonlinear multi-input, 
multi-output system is subject to gravity and centrifugal force. Conventional methods achieve precision, 
vibration suppression, and robustness by utilizing PID control, phase compensation control, optimal 
servo systems, disturbance observer-based systems, or Ｈ∞ control systems(1)–(9).Sufficient control, 
however, currently cannot be obtained. In this case, one possible approach is to linearize and decouple 
manipulator characteristics by compensating for the nonlinear dynamics of the manipulator, based on 
equations of motion. 

On the other hand, fuzzy neural network-based control(10)–(12) is being suggested as one type of 
intelligent control. It possesses the salient feature of constructing a robust control system for factors such 
as nonlinearity, friction properties, variations in load and system parameters, and unknown disturbances 
in mechatronic servo systems. However, these proposals are limited to single-degree-of-freedom 
systems. 

The method proposed in this paper constructs on the aforementioned suggested methods to create a 
multivariable system. A nonlinear manipulator equation of motion is directly utilized to bring about 
linearization using a neural network, while disturbance suppression and decoupling is controlled using a 
fuzzy neural network. A control law was devised that adaptively changes the gain according to time in 
order to continuously critically dampen the nonlinear system whose parameters var with time. The 
mutual interference of each joint in the multivariable system can be decoupled. In other words, perfect 
tracking control for the manipulator is achieved by designing a constant spring rate for the entire spring 
at all times. 
This paper leverages these distinctive characteristics to propose a new design method for a multivariable 
controller for manipulators that utilizes a fuzzy neural network. To verify the effectiveness and 
feasibility of the proposed method, a DC motor was used as an actuator and to serve as a nonlinear  
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Fig.1 diagram multivariable manipulator control systems 
 
controlled object. A decelerating mechanism determined the positioning that drives the manipulator, and 
simulations and an experiment were carried out on its application to servo systems. 
 

DESIGN OF A MULTIVARIABLE CONTROLLER UTILIZING A FUZZY NEURAL 
NETWORK 

 
Control System Summary 
 
Generally, the dynamics of an n-degrees-of-freedom servo system would be described as follows.                     

                          (1) 
Here,  is the n×1 vector expressing joint variables, is the n×１vector 

expressing the input torque, and  is the n×n symmetric, positive inertia matrix.  is the n×1 
vector expressing centrifugal force/ Coriolis force, is the n×1 vector expressing gravity, is the 
n×n symmetric matrix expressing the coefficient in viscous friction,  is the n×1 vector that 
corresponds to the coulomb friction, and   is the n×1 disturbance vector. Fig. 1 shows a block 
diagram of that control system. 
The multivariable controller is regarded as a combination of single-degree-of-freedom systems and is 
treated as an independent control system. The control system utilizing fuzzy neural networks is 
composed of 2 compensators, a feed-forward (FF-NN) compensator that learns the inverse dynamics of 
the servo system through a neural network, and gain scheduling (FN-GS) through a fuzzy neural 
network. Fig. 2 illustrates a block diagram of that control system. This control system is a 
two-degrees-of-freedom control system where target value response characteristics and closed-loop 
characteristics can be independently designed. To compensate for tracking to target input and dynamic  
characteristics of disturbance, FN-GS learns offline in order to minimize the square of the deviation 
signal e(t)=r(t)-y(t) of the target signal r(t) and the output signal y(t). The proposed system is 
constructed after learning these values.  

The following equation becomes true in relation to equation (1)for the n-degrees-of-freedom servo 
system when the manipulator is divided into the servo and model base and modeled.  
                                   (2) 
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Fig. 2 Block diagram of FN robust fuzzy PID 
 
However,  
servo:  decoupling matrix 
model base: vector 
Here, represents the FB-FN nonlinear error compensator and  is the FF-NN inverse 
characteristic that makes up the two-degrees-of-freedom control system. Next, the following equation 
(3) is adopted as the servo control law for the multi variable system. 

              
                (3) 

Applying the manipulator equation (1) to the control input renders the following equation.  

                       
(4) 

 
The control law that changes the gain according to time must be considered so that constant critical 
damping occurs in the system. Doing so will decouple each system. The pole will move the complex 
plane as a function of the object’s position and thus the pole’s position becomes fixed and a fixed gain 
cannot be selected. 
 The oscillation rate for the entire oscillation is made constant. The nonlinearity of the control system 
is negated with a nonlinear term so that the closed-loop system becomes linear. Therefore this control 
law is called the linear control law.  
 

                              

(5) 
   
Adjusting  to the adaptive gain, results in . 
 
 

Trajectory Tracking Design 
 

Neural network compensation is considered for equation (1) in Sec. 2.1, and when gravity G(q) and 
coulomb friction fd(q) are excluded, the following equation results. 

                        
(6) 

The neural network is expressed as: 



FNN-based Multivariable Controller for Manipulators 
 

 4  

                          

(7) 

   
Equation (7) can be expressed as follows: 

                                   (8) 

However, the following holds true. 

 : nonlinear mapping matrix 

  : load adjust matrix 

   : control input matrix 

   
A neural network is introduced to improve the dynamic characteristic of the controlled object. The 

neural network learns the inverse dynamics of the servo system offline and is used as a feed-forward 
compensator. Plant dynamic characteristics that apply feedback law on position and velocity can be 
expressed as  

              
              (9) 

by approximating and linearizing nonlinear characteristics as a second order system. 
Here, u(t) is input, y(t) is position, while kp and kv each represent position and velocity feedback gain. 
However, kv is inclusive of ke, the counter-electromotive force constant for the servo motor. The inverse 
dynamics of the servo system becomes  

             

             (10) 

when the target trajectory is r(t) and equation (9) is inversely solved as y(t) = r(t). The neural network 

learns the relationship of u(t) from r(k)，dr/dt(k)，and d 2r/dt 2 (k). Thus, input into the network is the 

column vector [3*1], I(k), expressed by the following equation.               

            I(k)=[r(k)，dr/dt(k)，d 2r/dt 2 (k)]T              (11) 

The input-output relation of each unit utilizes the linear function f(x)=x. In addition, network output 

becomes the estimate value  of the plant input. 

When the output of the intermediate layer is , neural network output can be expressed in the 

following manner.

 

 

         

                       (12)

 

 

 
However, n is the unit number of the intermediate layer and m represents the unit number of the input 

(13) 
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layer. Neural network learning is defined as the evaluation function 

                                  
(14) 

and carried out with Back Propagation (BP). Plant input is , and is the estimate value of the plant 

input calculated from the neural network. The simulation and experiment carried out later utilize3 
layers,3 inputs, 4 intermediate units, and the neural network of 1 output, as shown in Fig. 3.  
 

 
 

Fig. 3 Feed-forward neural network compensator 
 

Nonlinear Error Control System Design 
 

Fuzzy neural network is considered for Sec. 2.2, and adding coulomb friction fd(q) and gravity 
G(q)results in the following equation. 

                         
(15) 

Then, when the fuzzy neural network is accounted for the following equation can be obtained. 

                        

(16) 

 
 Equation (16) can be expressed as  

                                 (17) 

However, the following holds true. 

: nonlinear mapping matrix 

  : load adjust matrix 

  : control input matrix 

   

Fig. 4 demonstrates the structure of the proposed FB-GS compensator. Fig. 4(1) is the fuzzy neural 
network architecture, Fig. 4(2) and (3) are the membership functions, and Fig. 4(4) indicates the overall 
FN structure. The fuzzy neural network has 2 inputs, 4 layers, and 1 output. The input layer of layer A is 
the input signal for displacement error signal ep and the velocity error signal of the displacement 
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differentiation. This input signal is distributed to the next layer’s unit. Next, the intermediate layer of 
layer B holds the membership functions in the internal functions and employs a Gauss function. The 
output of each unit is a value of the membership function and is referred to as the antecedent. C layer is 
the consequent deduced with the fuzzy rule. Layer B is divided into 9 input spaces and the degree of 
compatibility of the divided spaces is calculated (equation (18) is the antecedent degree of compatibility 
for the fuzzy rule). The standardized value µi in equation (19) is produced as the aggregate of the 
antecedent degree of compatibility that can be gained from all units in layer C. Layer D is the linear unit 
(equation (21) and (22)) that produces aggregate input.  

Given the above, it is possible to create a neural network that has a fuzzy-rule architecture, called 
fuzzy neural network. This fuzzy neural network can learn using BP, and by devising a hierarchical 
neural network connection it can be given a correspondence relationship with a fuzzy reasoning rule.  

Output uFN is the direct input of the plant. In the fuzzy portion the input space is divided into 9 parts, 
and the degree of compatibility of the divided space can be applied with the equation below. 

                            i=1, 2,…, 9,  i1,i2=1, 2, 3                (18) 
Aij  expresses a fuzzy variable with a membership function.  
Ai1 and Ai2  each express the degree of compatibility for Positive big, Small, and Negative big.  
However, the degree of compatibility is normalized as follows. 
       

                    

                (19) 

To adaptively adjust the control gain, a fuzzy rule is established that adjusts output in response to 
volume of erroneous input.  
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Fig. 4 Fuzzy neural network gain scheduling 
compensator 

 
Table 1 Control rules 

ev  
Positive 
big 

Small Negative 
big 

Positive 
big 

P PD P 

Small PD PID PD 

 
ep 

Negative 
big 

P PD P 

 
The fuzzy rule for i is: 

Ri: IF e p is and ev is THEN y = fi(ep，ev)                                            (20) 

uFN-PD output is obtained as 

                                 
(21) 

Here, fi-PD is 

                                   
(22) 

uFN-PI output is obtained as 

                                                                  
(23) 

When fi-PI is 

                                                               
(24) 
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uFN additional output uFN-PID output is 
 

                                                       
(25) 

The deduction is obtained as 

                                                                    
(26) 

 
When uFN-PID and uFN are equal 

f becomes 

                                                             (27) 

However,  is the feedback gain. 
The control method in equation (27) carries out an operation that switches fuzzy PD and fuzzy PI 
according to error response. To respond to impacts on the control system due to disturbance and 
parameter variables by immediately approximating the target value, as shown in Table 1 PID control is 
used when both ep and ev are small. When |ep| is big, not when ep is small, damping is reduced and P 
control is used to gain a quick response. In other circumstances PD control is used. Each feedback gain 
is previously learned in the antecedent neural network. A control law is constructed with this type of 
structure. This composition becomes the control law adapted to errors.  

In the neural network for the FN-GS compensator, feedback gain learning takes place to minimize the 
secondary position error. 

                                                                       (28) 
In addition, to continuously fulfill the condition , the following is made true. 
 

 
Fig. 5 Scheme diagram of FN-GS gain calculation 

 

                                                                          (29) 
Fig. 4(1) and (4) specify in what layer of fuzzy neural network the processing expressed by equations 
(18)–(29) takes place.  
 

SIMULATION 
 

Using the designed multivariable controller the disturbance suppression and decoupling of the 
proposed control method were verified through simulation. The numerical simulation used an integral 
step size of 1[ms], a sampling duration of 2[ms], and a simulation period of 10[s] and was conducted 

with a sine-wave signal of 1[rad/s] and a xd=1deg. target value． 
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The simulation parameters in Table 2 change for each of the circumstances in cases 1–3.  
Using the above settings, the controller C(s) in the block diagram for the FN-GS gain controller shown 

in Fig. 2 can be applied as follows.  

                                                   
(30) 

The FN-GS gain shown in Fig. 5 is calculated, and just as the scheme diagram for the FN-GS gain 
matrix shows, the kij gain is optimally adjusted to obtain inverse dynamics of the target trajectory error 
signal by learning the fuzzy PID gain.  

Three simulations were conducted to demonstrate the effectiveness of the established system. 
Furthermore, the step response to the PID control and proposed robust gains scheduling are compared.  

Case 1 Fig. 6 indicates response according to the signal from target signal 1rad/s, and reveals that the 
position error of the proposed control is reduced through variable gain.  

Case 2The simulation was carried out with a sampling time of 2[ms], simulation time of 10[s], a 
sine-wave signal of 1[rad/s], and a target value of 1[deg]. However, in contrast to link 1 a 90-degree 
phase was given to link 2. Fig. 7 shows simulation results. The trajectory of link 1 was not impacted by 
the interference of link 2, and the decoupling of the system is apparent. 

Case 3 The responsiveness of the proposed method and the conventional method were compared 
against a 0.5[rad] step response. The results are shown in Fig. 8. The proposed method had a favorable 
response for start-up characteristics, demonstrating that an adaptive optimal gain was realized against 
conventional PID control and model-referenced gains scheduling.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Fig. 6 Responses on condition of 1rad/s 
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                           (a) Response of rink 1 

 
 
 
 
 
 
 
 
 
 
 
 

 
                         (b) Response of rink 2 
 
                         Fig. 7 Response of rink 
 
 
 
 
 
 
             
               
 
 
 
 
      (a) Step response of PID control             (b) Step response of  FN control 
 

 
  Fig. 8  Response for FN-GS control on condition of step disturbance 
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Fig. 9 Robot Manipulator 

 
 

EXPERIMENT 
 

 To confirm the effectiveness of the proposed control method, an experiment was carried out using 
only the first joint of a small,6-axis robot as a single-degree-of-freedom system.  
 Each parameter utilized with a control algorithm was as follows.  
  A sampling time of Ts=2ms, a velocity gain of Kv=3, NN learning frequency N=5000, F-N learning 
frequency N=50, and target trajectory signal T(t) were set at a sine-wave of 1Hz and amplitude of 30deg. 
Fig. 10 reveals that the phase delay is improved, demonstrating that NN effectively follows the target 
trajectory. However, near the peak friction impact produces stationary error.  
 On the other hand, as seen by the response signal in Fig. 11, it was confirmed that the nonlinear 
stationary error compensation sufficiently performed using a fuzzy neural network. Deviation signals 
produced by elements such as model error and friction were adaptively reduced through the 
feed-forward NN compensator.  
 Furthermore, Fig. 12 illustrates the fuzzy neural network output when a disturbance was added in the 
form of a 1kg weight was placed on the tip of the robot. In other words, it marks the reply signal that 
displayed changes influenced by gravity. An F-NN output signal was created to follow the target signal 
based on disturbance. Results show verification of disturbance suppression and decoupling in response 
to disturbances.  

 
Fig. 10 Response of N-N 
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Fig. 11 Response of F-N 

 

 
Fig. 12 Response of F-N control to disturbance 

 
 

CONCLUSION 
 

This paper proposes a multivariable control system design for manipulators using a fuzzy neural 
network. The method suggested here is a multivariable expansion of the author’s proposed method(12). 
Linearization was carried out with a neural network by directly using a nonlinear manipulator equation 
of motion. The control employs a fuzzy neural network to suppress disturbance and decouple. A control 
rule where the gain adaptively changes with time was used so that nonlinear systems that change 
parameters according to time continuously carry out critical damping, thereby accomplishing decoupling 
of mutual interference for each joint in the multivariable system. In other words, it was possible to 
design a constant oscillation rate for the entire oscillation at all times and achieve perfect tracking 
control of the manipulator.  

To verify the effectiveness and feasibility of the proposed method, a DC motor was used as an actuator 
and to serve as a nonlinear controlled object. A decelerating mechanism determined the positioning that 
drives the manipulator, and simulations and an experiment were carried out on its application to servo 
systems. 

The above results demonstrate the effectiveness and feasibility of the proposed control approach. 
There are plans to continue research on load deflection and cooperative control.  
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