
1

REDISCOVERY OF PATTERN LANGUAGE
FROM THE INFORMATION SYSTEMS VIEWPOINT

Kiminobu Kodama
†, ‡

 and Tadanori Mizuno
‡

†
EXA Corporation,

580 Horikawa-cho, Saiwai-ku,
Kawasaki, Kanagana Pref. Japan.

‡
Graduate School of Science and Technology,

Shizuoka University
3-5-1 Johoku, Hamamatsu 432-8011,

Shizuoka Pref., Japan.

ABSTRACT

Software engineering produced the significant results of design patterns, Pattern-Oriented Software
Architecture, and so forth, by using the pattern language of architectonics, but it only focused on the
aspect of the format of the pattern as know-how description. Focusing on another aspect of pattern lan-
guage—“timeless way” as continuous activities—it seems that pattern language is an ideal mechanism
to incorporate the requirements and the design constraints of information systems into itself as organi-
zation learning. In this paper, the information systems cycle is proposed for the building process of the
enterprise information systems from such a viewpoint, and the meaning and the problem of incorporat-
ing the pattern language into the cycle are discussed.

Keywords: information systems cycle, pattern language, proto-requirements, urban planning approach

INTRODUCTION

In recent years, enterprise information systems (EIS) have become closely related to business strategy
(MSSG, 2004). However, EIS still have many problems, such as the requirement of a great investment
of money and time for the development, maintenance, and operation of systems. One serious problem
is that the systems cannot change quickly in reaction to changes in the business environment; this
could negatively affect the business base. The main reasons that systems development cannot conform
to changes in the business environment are that the speed of change is too rapid for businesses to catch
up and the cost of development is too high. Additionally, there are peripheral factors: the information
systems manager might not recognize the problems and cannot change the information systems because
no one in the organization possesses knowledge of the entire system.

A decrease in the planning power of EIS and a lack of flexibility in the organization have lead to a
decrease in corporate power. Additionally, social influence is increased when trouble with information
systems occurs and the ability to fulfill responsibilities is required. To solve the problem, conceptual
data modeling and business process modeling projects have been attempted as methods for the infor-
mation systems division to use to plan and manage their information systems using the guidance and
education of project planning (Teshima, 2002). However, such a modeling does not generally produce
satisfactory results. Even if the situation has already been taken into account, it is problematic to write
only a superficial model, which can obstruct an essential discussion and a flexible conception of the
business system.

Davis (2005) stated that it is often difficult for customers to write their requirements documents using
any formal methods. Customers must not dedicate their time and their labor to such documents, but
instead use their time to plan more essential business strategies. Based on these assumptions, this pa-
per discusses the management and requirements for effective construction of information systems.

THE INFORMATION SYSTEMS CYCLE

The development of EIS can be compared to urban planning (Namba, 2005). In contemporary urban
planning, only a few town blocks at a time are redeveloped gradually, accommodating residents’ needs
and making the best use of the existing infrastructure. Enterprise information system managers can
adapt the concepts of architectonics for their own systems.

Rediscovery of Pattern Language from an Information Systems Viewpoint

2

Learning from Architectonics

Zachman Framework
Zachman (1987) found a correspondence between the information systems process and the process of
constructing a building. The building process advances through the architect’s conversations with the
owner and the builder. Zachman found similarities between the processes of the construction of a
building and the production of information systems. He proposed that the construction of information
systems should be based on a disciplined approach such as the construction and documentation proc-
esses.

The Owner, Designer, Contractor, and Architect
Vitruvius, an architect in the Roman era, described an architect as one who manages the trade-offs
among the needs, design, and structure of a building. The needs are the owner's concerns, the design is
the designer's concern, and the structure is the builder's concern. In the construction of information
systems, there are also the roles of owner, designer, builder, and architect. Zachman (1987) found that
the role of architect emerges from the structure of the other three roles and the processes among these
roles. Zachman, however, considered the construction of only one building. The owner of EIS might
be the organization, including the CIO and his/her assistants as the financial representatives of the en-
terprise, or might simply be a manager of accounting or manufacturing.

Expectations

Proto-
Requirements

Artifact

?À‘•
Artifact

?À‘•
Artifact

?À‘•Artifacts

Artifact

?À‘•
Artifact

?À‘•
Artifact

?À‘•Artifacts

Function

‹@”\Requirements
Function

‹@”\Requirements

Architect
BuilderDesigner
Feature

‹@”\
Feature

‹@”\Specifications

Pr
ob
le
m

A
na
ly
si
s

design

Requirements
Analysis

Shop

adjustm
ent

im
pl
em
en
t

utilize

Artifact

?À‘•
Artifact

?À‘•
Artifact

?À‘•Products

Artifact

?À‘•
Artifact

?À‘•
Artifact

?À‘•Products
Owner

Figure 1. Information systems cycle model

Information Systems Cycle Model

The construction process of information systems that Zachman (1987) described can be redefined as a
continuous cyclic process.

The relationship among the participants involved in the construction of information systems, including
the owner, designer, builder, and architect and the products that flow among them, are identified in
Figure 1. Raw materials are converted into end products in a stepwise manner by the series of actions
of the participants as they play their own roles in a process called the information systems cycle.

Expectations, Proto-requirements, Requirements, Specifications, Artifacts, and Effects
The starting point of the information systems cycle is a declaration of expectations by the owner that
establishes the targets of the process. The concrete states or the objectives by which the expectations
are achieved are called proto-requirements. The expectations are translated into the proto-requirements
through the interaction of the owner and the architect. The proto-requirements are converted into formal
requirements by the designer, and the requirements must be approved by the owner. The requirements
are translated into manufacturing specifications through the interaction of the designer and the builder.
The builder converts the specifications into artifacts such as programs, data, or manuals, and after the
artifacts pass inspection, they are delivered to the owner. At this time, some slight modifications
called shop adjustments may be made and the owner accepts these as products. The changes made after
delivery of the products are called maintenance. The owner obtains effects from the organization’s use
of them.

In general, EIS are constructed partially and gradually. Because it is rare that the expectations of the
owner are satisfied within one cycle, cycles might be continuously repeated. Furthermore, the cycles
may continue as long as the business continues to react to changes in the business environment.

Rediscovery of Pattern Language from an Information Systems Viewpoint

3

The software process is considered here to be an internal process of the information systems cycle. This
cycle is not a newly designed process but simply a reformation of the already known software proc-
esses. However, the software process can be clearly delineated by recognizing the components of the
cycle, especially the proto-requirements, with which the owner can take the initiative in the cycle. The
primary work of the owner and the architect in an information systems cycle is explained in the follow-
ing sections.

The Declaration of Expectations by the Owner

The expectations are the declarations of the owner's vision. No designs should be included in the ex-
pectations. It is necessary for the owner to declare the expectations in his/her own words; accordingly,
they are often described in the context of a story. Trust and motivation can be built among the team
members when the story is narrated clearly.

1

Analysis of Problems

The activity that leads to the proto-requirement stage is called problem analysis. Its purpose is to gen-
erate proto-requirements before the requirements are described. Problem analysis ensures the commit-
ment of owners by presenting requests in language that they use. Owners thus recognize that they are
the hosts of continuous activities. The architect works with the owner to define his or her proto-
requirements.

 The Positioning of Proto-Requirements
The proto-requirement stage falls between the stages of expectations and requirements. The content of
the declarations varies according to the characteristics of the business and the developmental stages of
its EIS. For instance, if the response time of the system influences the business, performance and
safety requirements might be included in the proto-requirements. In an enterprise with insufficient in-
formation literacy, there might be proto-requirements that only paraphrase expectations. However, in
such a case the architect should take care of the poor proto-requirements so as not to be confused in the
following stages.

Proto-requirements include aspects of the entire EIS and parts of the individual business system. Al-
though the proto-requirements are initially presented together, they are changed and differentiated as the
information systems cycle progresses.

 Early Testing of Proto-Requirements
It is necessary to test the proto-requirements immediately to confirm the existence of enterprise ac-
commodation and commitment to them. Note that this is not a software test. Not only the specialist
but also the owner and the stakeholders review the proto-requirements. Therefore, the presentation is
carried out using comprehensible formats, such as user scenarios, demonstration videos, or story-
boards. It is also useful to make the prototype a component of a core part of the proto-requirements.

Designing

The design work consists of converting the proto-requirements into the requirements for the solution
plans. The requirements correspond to the drawings for both the artistic and structural designs of the
building. The conversion work can be considered a designer's creation, with which it is unacceptable to
interfere.

The requirements of EIS are rough sketches of the business system, consisting of the entire plan, the
conceptual data model, the business process model, the conceptual use case, and state diagrams. These
become input to the builder, although the designer may revise the requirements after receiving feedback
on how to manufacture and implement the models more economically and quickly. The requirements
are completed and tested immediately. The owner tests the requirements using general explanations and
a demonstration of the systems provided by the designer. A more technical explanation is provided to
the builder, who will estimate the manufacturing cost based on the requirements.

1 A good example is the short story “Lightning of Senjogahara, Nikko” by Shinichiro Sakurai, the chief de-
signer of Nissan Motors’ Skyline-R30 model. At the first design meeting for the new model, he narrated an
image with a story of the car hurrying toward a lover waiting at a hotel in the rain, briefly illuminated by a
flash of lightning.

Rediscovery of Pattern Language from an Information Systems Viewpoint

4

REDISCOVERY OF PATTERN LANGUAGE AS ACTIVITIES

Pattern language is a concept of planning and designing towns and houses proposed in the 1970s by
Christopher Alexander, a professor of architectonics. He recognized that towns or buildings that have a
“quality without a name”

2
 possess useful patterns handed down from past centuries but which are now

forgotten. He thought that revealing and applying these patterns would aid in the successful planning
of future towns. This idea had a great influence on software engineering in the late 1990s.

This idea yielded the concept of “Design Patterns” (Gamma, et al., 1995), which resulted in many
pattern-catalogues. We owe much to the Hillside Group's Pattern Language of Programming (PLoP)
initiative.

3
 The pattern movement has contributed and continues to contribute to quality and productiv-

ity improvements in software production. However, the results only took into account the aspect of the
pattern of the know-how description. The original pattern language is the set of activities called “The
Timeless Way of Building” (Alexander, 1979).

Management of the Activities

Rules that provide the principles for the actions and criteria for the accomplishment of the project are
formulated before starting each project. In “The Oregon Experiment”(Alexander, 1975), which was
based on such rules, the “planning board” was organized to manage the construction project, and the
board maintained the pattern language. The board consisted of the owner (university), the user (stu-
dent), and the architect. None of the builders was included. In Alexander's other projects, there was no
mention of having formally set up an organization such as a planning board, but both the owner and
the users were involved in the activities.

How to Use the Pattern Language

The usage provided in the book “A Pattern Language” (Alexander, 1977) is now described. First, ac-
cording to the theme of construction, one looks for and extracts the most appropriate pattern from
among 253 patterns. Other patterns to which the pattern refers are extracted, if necessary. Next, only
useful patterns are extracted from the following patterns. After any necessary changes and additions are
made, the set of patterns is assumed to be “the pattern language” for the project. This is like a poem to
be recited, Alexander said. Note that the order of the pattern language should be maintained during this
procedure.

The example of the Eishin-Gakuen Higashino high school in Japan that he involved shows how the
pattern language is spoken. In Figure 2, each underlined section is a pattern, and the pattern description
corresponding to each section is made separately. The pattern language is spoken as if one were walk-
ing through the site, giving a vivid image of the school (not a schoolhouse, but a life) to be estab-
lished in the future. The proto-requirements of information systems should be stated as they are in this
example.

2-3. The Door Road
There is the d oor r oad toward the boundary from the front gate to the inside. The walls or the

trees stand in a row on both sides of the door road, and it is very quiet.

2-6. The Important Center
Passing through the third gate , across the Central Plaza, there is the most important center of the

high school and the university . Here, the place can be reached by passing through the many

folds of the way, and there is quietness.

4-7. The Quiet Part of the Character Square-plus-Cross Center

The other half of the character Square-plus-Cross Center is more mysterious. Maybe it is the rear
of the student hall that leads to the university corridor . It is possible to glance at the place from

the entrance , or through the pillars of the arcade . But the place is so quiet that the high school

students cannot go there. Whenever the high school students glance at the place, they yearn for
the education that they'll receive there.

Figure 2. Example of proto-requirements in pattern language

2 “Goodness which cannot be explained.”
3 http://hillside.net/

Rediscovery of Pattern Language from an Information Systems Viewpoint

5

Each pattern is also a technological vocabulary that passes among the three people. If someone says
“the door road,” for instance, they all understand at once what that means. The pattern will be corrected
if misunderstood.

The pattern language also contains the meaning of the design code, which restricts the designer's degree
of freedom. Even though the degree of freedom is restricted, it is expected that the design efficiency
will increase by the narrowing of the design space that the designer uses at the conversion. Because
different designers will design similar models, the order of the landscape will be maintained.

THE CONCEPT OF INFORMATION SYSTEMS PATTERN LANGUAGE

Each plan based on the proto-requirements of the information systems cycle using the idea of the pat-
tern language summarized below.

A Pattern Language for Information Systems

Proto-requirements are stated in pattern language that is easily understood by the stakeholders and en-
ables early testing. The workflow when the pattern language is introduced into the information systems
cycle is shown in Figure 3, where the process diagram is used (Eriksson & Penker, 2000).

The Timeless Way
The work of the organization that corresponds to the planning board is to write and maintain the mas-
ter pattern language. It is shown in the cycle in the upper half of Figure 3. The construction planning
of an individual business system is called a program. Program management determines the sequence
and timing of the initiation of the programs. The evolution speed of EIS is controlled by this adjust-
ment and the decision by the organization. The planning board includes a user's representative.

The Completion of Programs
Each project team is composed of an owner, a designer, a builder, and an architect. As shown in the
lower half of Figure 3, three of these refer to the master pattern language differently. The owner refers
to it as a dictionary of technical terms to state his or her proto-requirements, the designer refers to it as
a design code to design the requirements, and the builder refers to it as a construction standard to pro-
duce the software products. Each one’s work might progress concurrently as the expectations and re-
quirements become clear through the statement of the proto-requirements spoken in the pattern lan-
guage. The traceability from the expectations to the effects is ensured in the process.

Editing master pattern language in the domain

Planning Board

Designer Builder

?mcontinue?n

<<define>>
<<modify>> <<feedback>>

<<refer>> <<use>>
Design Code

<<refer>>

Define
Rules

Proto-
rqmts

Utilize

Customer

RqmtsAnalyze

Owner

Build
Expec-
tations Product

Dictionary
<<use>>

Pattern language for each project

Construction Standard

Effects

Design

Figure 3. The information systems cycle with the pattern language

The users evaluate the quality of the products by operating them and reporting the results to the plan-
ning board. The planning board receives them and adds corrections to the master pattern language, if
necessary. Through this cycle, it is expected that the knowledge of the principles or know-how of the
business and the laws of the industry can be easily accumulated, and the quality of the entire EIS can
be continuously improved.

Rediscovery of Pattern Language from an Information Systems Viewpoint

6

Software Process Cycle

In the information systems cycle, the software process is one internal process generally considered to
be the professional responsibility of software builders. For the owner, an information systems con-
struction program is usually performed only once. In contrast, the builder has participated several times
as a contractor in similar programs with other owners and has gained considerable knowledge. This
knowledge is accumulated through a feedback loop for the builder called the software cycle, shown in
the process diagram of Figure 4. Reusing such knowledge effectively will now be discussed as a soft-
ware product line approach (Sugumaran, et al., 2006).

Steering asset building of the domain

Quality Management Board

Builder

?mcontinue?n

<<define>>
<<modify>>

<<feedback>><<use>>

<<refer>>

Define
Rules

Shop

Adjust.
Specs Manuf. Artifacts

Core assets and variants

components

Builder

<<refer>>

Rqmts Analysis Products

Builder

framework
components

Figure 4. The software process cycle embedded in the software product line development

The Two Cycles Intersect Obliquely

We should consider that the information systems cycle of the owner and the software process cycle of
the builder intersect obliquely (Figure 5). In the information systems cycle, the processes from provid-
ing the requirements to accepting the products are performed at this intersection. In the software proc-
ess cycle, the processes from capturing the requirements to delivering the products are performed at this
intersection.

Owner-A

Owner-B

Builder-X Builder-Y

U
ti
li
ze

P
ro
b
le
m

an
al
y
si
s

D
es
ig
n

Production

A
n
al
y
si
s

T
es
t

D
es
ig
n

M
an
u
-

fa
ct
u
ri
n
g

S
h
o
p

ad
ju
st
m
en
t

Figure 5. The intersection of the information systems cycle and the software process cycle

It should be emphasized that neither requirements nor proto-requirements exist on the upstream process
of the software process cycle of the builder. Therefore, the requirements engineering requires an ap-
proach based on a sense of values different from software engineering. A discussion concerning the
architect's role should not be avoided.

Rediscovery of Pattern Language from an Information Systems Viewpoint

7

TOWARDS THE ACTUALIZATION OF THE PATTERN LANGUAGE
FOR INFORMATION SYSTEMS

To perform actions based on the pattern language of information systems, it is useful to have a refer-
ence model corresponding to “A Pattern Language.” The model language will be made according to
the following procedures: (1) collect the required documents from past projects to use as proto-
requirements again, (2) derive the technological vocabularies used in the proto-requirements and rewrite
them into a pattern format, (3) correct or add each description of the patterns if there are duplications or
gaps among collected patterns, and (4) adjust the duplications and gaps in the patterns again to align
the patterns as a whole to derive a theme related to the society's or organization's business practices.

CONCLUSION

Information systems have come to play a significant role in business processes as businesses continue
to expand and become more complicated. Software builders, not business owners, now plan, develop,
and implement new information systems, excepting a few noteworthy companies. As the relationship
between the purchaser and the contractor has emerged, the purchaser's responsibility in urban planning
has been abandoned. As a result, architects have left. However, the use of software without the ap-
proval of the owner cannot yield satisfactory results.

Zachman's framework and the Enterprise Architecture allow the owner to regain sovereignty in plan-
ning, constructing, and operating EIS. This paper has redefined these processes as the information sys-
tems cycle, and proposed using pattern language activities in information systems to continue “the
timeless way.”

REFERENCES

Alexander, C. (1975). The Oregon Experiment, Oxford Univ. Press.

Alexander, C. et al. (1977). A Pattern Language, Oxford Univ. Press.

Alexander, C. (1979). The Timeless Way of Building, Oxford Univ. Press.

Alexander, C. (1985). The Production of House, Oxford Univ. Press.

Checkland, P. (1981). Systems Thinking, Systems Practice, John Wiley & Sons.

Davis, A. M. (2005). Just Enough Requirements Management: Where Software Development Meets
Marketing, Dorset House Publishing.

Eriksson, H. and Penker, M. (2000). Business Modeling with UML, John Wiley & Sons.

Gamma, E. et al. (1995). Design Patterns, Addison Wesley, Reading, Massachusetts.

MSSG (Management System Study Group) Ed. (2004). NTT DoCoMo Challenge for Real-time Man-
agement, Nihon Kougyou Keizai Shinbun, Tokyo. (in Japanese).

Namba, Y. (2005). System integration and urban planning approach in enterprise information

systemsÅCin A discussion point of system integrations, Nikka-Giren, pp. 79-92, (in Japanese).

Sugumaran, V., Park, S., and Kang, K. C. (2006). Software Product Line Engineering, Communica-
tions of ACM, Vol. 49, No. 12, pp. 29-32.

Teshima, A. (2002). Reproduction plan for information systems department being worriedÅCNikkei
Computer, No. 08/26, pp. 172-177, (in Japanese).

Zachman, J. A. (1987). A Framework for information systems architecture, IBM SYSTEMS JOURNAL,
Vol. 26, No. 3, pp. 454-470.

	Home Page
	Paper Index
	Keyword Index
	Author Index
	Search
	Print

