Evaluating Effects of RFID Introduction Based on CO2 Reduction

Yoshifuyu Karakasa, Hirohiko Suwa, Toshizumi Ohta University of Electro-Communications 1-5-1 Choufugaoka Choufu-shi, Tokyo 182-8585, Japan

Abstract

In this paper, the effects of RFID introduction will be discussed with respect to the Carbon dioxide (CO2) reduction ef fect based on a case of W al-Mart Stores. Companies eagerly introduce RFID technologies to improve supply chain management (SCM). Information and communication technology (ICT) is believed to improve environmental problems, such as creating sustainable society. The Kyoto Protocol requests the countries ratified to archive each CO2 emission tar get. get. However, it is not proposed the method to evalu and companies are aware of the tar ate the reduction of CO2 emission by employing RFID technologies. The method to calculate the reduction ef fect of CO2 emission will be developed, and estimated the ef fect in a case of W alfect in SCM. In concl usion, the methods based on Mart Stores, and also evaluated its economic ef CO2 emission reduction ef fect can be successfully developed to evaluate the ef fect of RFID .

Keyword s: SCM, RFID, sustainable society , CO2 emission, W al-Mart Stores

1.

Recently, Companies eagerly introduce RFID technologies to improve supply chain management (SCM). In demand forecasting of RFID, According to the RFID demand forecast provided by Y ano Economic Research Institute (2007), the demand is estimated to be 1,884 in 2010 while it was 44 million sheets in 2005 (125% over previous fiscal year). This is a tremendous increase. It is estimated that distribution (retailers) and physical distribution (transportation and warehousing) fields will occupy 90% of the demand in 2010. Judging from these facts, it can be said that IT applications applied by RFID technology have already rushed into the time for actual utilizations.

According to Hotta (2004), it is often said that SCM (Supply Chain Management) in Japan has better quality in its ef ficiency compared with the one in Europe and the United States and that the ef ficiency by FRID is so limited in the SCM. One of the reasons of the limitation in retailer area (from shipping to retailers), he pointed that retailers have average one month inventory . To solve the limit ation, he stated that it is necessary to discuss ROI of FRID applications for SCM enhancement from corporate management view points.

On the other hand, on present business, according to the monthly material flow's writer (2006), makers (supplier) including Hewlett-Packard Inc. who has delivered W al-Mart Stores have to stick with a RFID tag for W al-Mart Stores' distribution centers at the time of the shipment from the sales company warehouse of the U.S., and have to pay expense, for the time being. However, the makers (suppliers) can n t roduction

hardly receive the merit by the RFID. It was reported "there is no investment merit for suppliers who attach and supplies a RFID tag to major upstream retail stores although some merit can be af forded to the major downstream retailers chain. Judging from this fact, it is general that the makers (suppliers) can hardly receive without solving the RFID tagging expense issue.

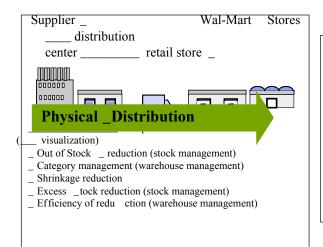
But FRID introductory ef fect can exist in some fields, but it depends how RFID applications can be constructed.

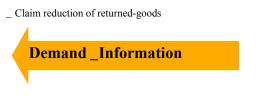
Information and communication technology (ICT) is believed to improve environmental problems, such as creating sustainable society The Kyoto Protocol requests the countries ratified to archive each CO2 emission tar get. and companies are aware of the tar get. According to Miyashita (2005) , the environment involving distribution systems are changing a lot in recent years. While consumption demand matures, concentration and globalization of distribution structure are progressing and public changes, such as deregulation, the innovation and spread of IT, are progressing. At the same time, CO2 reduction in distribution processes is strongly demanded to cope with the global environmental issues. The major companies have come to release their "environmental CSR (Corporate Social report" from the Responsibility) standpoint. Considering those circumstances, when RFID was introduced to SC_, I calculated "the presumed value of the rate of CO2 emissions reduction ef fects " as an introductory ef fect item, and thou ght that it was necessary to adopt as one of evaluation criteria.

In this paper, it inquires with the SCM

introduction example by RFID among W al-Mart Stores (U.S. major retail store) and the suppliers.

2. Effects of RFID intr oduction in Wal-Mart Stor es


A supplier and W al-Mart Stores are building the physical distribution network ef ficiently through respective distribution centers using RFID (refer to Fig.1). It is important to feed back demand information in physical goods movement on a real time basis to the upstream suppliers to increase a process improvement in productivity in returns process...etc. That is the big effect through the improvement from the physical distribution to fund recovery processes is by visualizing information.


Mitani (2003) stated ['informational visualization reforms a supply chain'] and defined that it could be done by coordinating the information among the dif ferent systems and different part codes by corporate or ganization and made the information consistent.

In order to deploy a supply chain with much efficiency,

It would be a key to obtaining information, namely, events on a real time basis, which would be a turning point for a success or a loss. In this point, RFID tag, namely RFID, could be a useful tool to identify automatically the status by simply putting goods, foldable containers, and pallets vehicles with RFID through both starting point and arrival point. That process would be big help to grasp the real time status such as inventory, shipping transportation...etc. Therefore, he expects that RFID will be a practical tool rather than a current bar code system and asserts that RFID introduction is a new method to visualize information in SCM.

The sales amount of W al-Mart Stores is 256,300 _million dollars in 2003 (source:Fortune500). According to Ohya (2005), although reduction of labor costs and out of stock have been accomplished. And the further cost reduction of 8,300 million dollars is planned over five years.

Fig.1_Effects of RFID introduction in Wal-Mart Stores

According to Funamoto (2005), it is assumed that the associated costs of RFID introduction comes to 1 billion dollars from 2003 to 2005. Compared with the suppliers who paid the tag for Wal-Mart Stores, as tag introduction was made for nothing. It can be regarded as quite advantageous conditions.

The investment vs. ef fect for five years of Wal-Mart Stores was summarized in Fig. 2. 2006, 2007 after Fortune500 were predicted using 1 1% of sales growth rates in 2005 to 2006 from 2003 of sales, and it asked for the sales sum total of about 1,600 billion dollars for five years.

Year/2003	2004	2005	2006	2007		
2586	2974	3420	3933	4523	Fig2:	
The Wal-Mart Stores sales transition						
(Unit: 100M\$)						

Among RFID introduction expense, the average ratio during 2003- 2005 (1 billion dollars) was applied, which resulted in 1,700 million dollars investment from 2003 to 2007 as an assumption. _The RFID introduction ef fects in Wal-Mart Stores _ are summarized i n Fig3.

Since the reduction ef fect is estimated to be 8,300 million dollars to the investment amountof-money 1,667 million dollars for five years, it can be found that the investment ef fect is around 1,327 million dollar on an annual average basis. On calculation, total 5 years investment can be recovered in less than one year RFID investment ratios are about 0.1% of sales also for the sales for five years because W al-Mart Stores of 1,600 billion dollars. From these results, Wal-Mart Stores as a major retail company can enjoy the investment ef fect of RFID. However, I said in Chapter 1, we can find no positive ef fect as for suppliers because there is no concrete number released.

Investment _vs. Ef fect _(unit : 100M\$)		
Sales Amount(2003 _2007 _ 16,040.93		
Introduction Cost(2003 _2007 _ 16.67		
Reduction ef fect_5years _ 83.00		
Warehouse Management 67.00		
Stock Management 6.00		
Shrinkage 5.75		
Visualization 4.80		
Fig.3 _Effects of RFID introduction in		
Mart Stores		

On the other hand, RFID introduction of retail trade companies is very prudent in Japan. The reason is simple. One is the unit price of the RFID tag per sheet is high and the other is the difficulty among makers and whole sellers to clarify the responsibility, namely, which side should owe RFID cost. From SCM viewpoint, I could build the highly complete distribution system in SCM, and think that it is possible. However, many companies are going to discern the trend of a tip company like W al-Mart Stores from a viewpoint of the RFID investment ef fects vs. RFID introduction. Considering such circumstances, I think that there is an important meaning to study the U.S. W al-Mart Stores case.

3. CO2 Reduction Ratio

The whole physical distribution in cooperation with suppliers like U.S. W al-Mart Stores presumes the ef fect of 'environmentally harmonized physical distribution ef ficiency' by reduction of CO2 emission by construction of RFID introduction in the SCM. The coef ficient of the reduction ef fect by RFID is created from the example of W al-Mart Stores. Although the composition of physical distribution expense means the thing of all the expense generated in relation to physical distribution activity generally we can consider transportation expense, warehouse expense, management expense, etc. Here, it can be defined as all the expense of the physical distribution activity between Wal-Mart Stores and suppliers. Generally, transportation expense is obtained by the following formula.

Transportation expense = transportation (weight t) x transportation distance (km) x K_(transportation company sets up uniquely)

_Thais formula explains that the transportation costs decrease when transportation goods are cut down as transportation itself is reduced.

Amount of the ener gy used, such as a track, is proportional to transportation weight (t) and transportation distance (km) (refer to figure 4-(1).

I can say that transportation expense and the amount of the ener gy used has a positive correlation.

_Since carbon-dioxide emission (tCO2) are proportional to the amount of the ener gy used (GJ) (refer to figure 4-(2)), if ener gy is reducible, it can be said that CO2 emission is also reducible. This means that CO2 emission can be reduced by transportation expense decrease in the transportation with positive correlation between ener gy reduction and CO2 emission. If we can grasp the percentage of the physical distribution expense of W al-Mart Stores, the rate of CO2 emission reduction can be obtained.

(1) The Amount of Ener gy Used (GJ)
: Revision ton km method
= $[T ransportation (W eight T) x]$
Transportation Distance (Km)] x Fuel Use
Field Unit Price (L/t/Km) x 1 / 1,000 x
Unit Calorific Value (GJ/ Kl)
(2) Carbon-dioxide-emission (tCO2)
: The calculation method from fuel
= used ener gy (GI) x CO2 emission

K (tCO2/kWh)

Fig. 4: Ener gy / CO2 calculation formula

According to Sasaki (2003), physical distribution expense ratio is the sales of 2% or less. As I stated in Section 2.1, the sales sum is about 1,600 billion dollars for five years, an average annual sales is 320 billion dollars (the number about W al-Mart Stores will use an average below for five years).

(1) Wal-Mart Stores Physical Distribution Expense = Sell (320 Billion Dollars) X 2%.

= 6,400 million dollars

Utilizing RFID introductory effect of W al-Mart Stores expectation, I explained the item and the amount of money of the reduction effect, a shrinkage and SCM visualization. By those items, I judged that it was the most effective in ener gy cost reduction, i.e., CO2 emission.

Transportation expense can be re duced since shrinkage becomes lower unless loss and theft happens. Moreover , SCM visualization will also be conjectured that the amount of physical distributions becomes less so much, and transportation expense also decreas es if stock decreases in number . Although it was expected that other items were ef fective in ener gy cost reduction, since which item of warehouse management or inventory management was effective or the numerical value was not clear .

(2) T ransportation Expense Reduction (5year average) = shrinkage +SCM visualization

211 million dollars

This is calculated by regarding as a rate of CO2 emission reduction by making the introductory ef fect of RFID into the rate of physical distribution expense reduction.

(3) Rate of the Amount of CO2 Emissions reduction

= Rate of Energy reduction (T ransportation Relation)

= Rate of T ransportation Expense reduction

= (2) T ransportation Expense Reduction /(1)

Wal-Mart Stores Physical Distribution Expense _3.2% .

If it takes into consideration that transportation in multi-frequency small quantity will be introduced when inventory is cut down in recent years, it will be indicated that there is a difficulty in connecting CO2 emission with a simple assumption to expense a little. In this paper, argument was advanced on the assumption that the rate of loading had it and it did not take multi-frequency little transportation into consideration with the meaning of this paper, since actual data was obtained and it did not necessarily ask for the data of the rate of CO2 reduction itself with things about the rate of loading, or multi-frequency little transportation.

3.1 Calculations of CO2 r eduction method

When it is necessary to convert "the amount reduction ef fect of CO2 emission" into the amount of money, if the amount of CO2 emission is multiplied by the original unit price, it can ask concretely like the following formula.

Amount of CO2 Emission Cost = Field Unit Price (dollar / tCO2) X CO2emission amount

There are three original unit prices for converting greatly . Although collected into Fig. 5 as a whole, I want you to refer to the following about the source of each original unit price.

(1) According to the data of [right cost to emit CO2]: "the Ministry of Economy, Trade and Industry Industrial Structure Council environmental sectional meeting market mechanism special committee (1 1th time)", it deals with by per 12US dollars from about 7 US dollar per 1 t-CO2 in the trade-in-internationalpermits market by CDM (Clean Development Mechanism).

(2) CO2 emission cost : according to IPCC (2001), per 1 t-CO2 and from about 21 US dollar, the trial calculation of expense (a dollar / tCO2) required in order to cut down CO2 is made in the U.S. as they are 1 12US dollars.

(3) CO2 carbon tax: IPCC (2007), As plan expense, since it is a trade in international permits and a carbon tax, the plan which asks a company for the burden of 100 dollars has been adopted.

```
(1) Right Cost to emit CO2 = Field Unit Price
(Dollar / tCO2) x CO2
Emission Field Unit Price = $7 /t - $12 / t
(2) CO2 Emission Cost = Field Unit Price
(Dollar / tCO2) x CO2
Emission Field Unit Price = $21 / t - $1 12 / t
(3) CO2 Carbon T ax = Field Unit Price
(Dollar / tCO2) x CO2
Emission Field Unit Price = $100 / t
```

Fig. 5 Amount co st conversion method of CO2 emission

_Thus, although three were proposed as the amount cost conversion method of C O2 emission , it depends on judgment by which method amount-of-money conversion are carried out in this of the person in char ge who introduces RFID on SC M.

generally, multiplyin g by it and asking the amount of the ener gy used (GJ) for CO2 emission coefficient has come out as Fig4-(2) shows carbon-dioxide emission (tCO2) However, in this W al-Mart Stores example, although the rate of the amount reduction of CO2 emission and the transportation expense reduction amount of money have been guessed, since neither the amount of C O2 emission reduction nor data required for a guess has come to hand, amount-of-money conversion have not been carried out.

3.2 CO2 Emission-Convert by Transpo rtation Charge.

In this W al-Mart Stores example, although the rate of the amount reduction of C O2 emission and the transportation expense reduction amount of money have been guessed, since neither the amount of CO2 emission reduction nor data required for a guess can come to hand, exact amount-of-money conversion cannot be performed.

Then, in order to obtain a certain amount of feeling of a scale, in the "environmental harmony type logistics investigation outline" which the Ministry of Economy , Trade and Industry (2003) has published, it CO2 emissioncalculation by the transportation char ge indicated by the calculation formula of an environmental load total amount at (4) (reference), and the following formula was used.

CO2 emission (kg-CO2) = T ransportati oncharges (yen) x CO2 emission field unit (kg-CO2/yen)

The environmental load unit price field unit data book by the National Institute for Environmental Studies "inter -industry-relations table" is mentioned to CO2 emission field unit as reference. From this original unit-price data file (2000 producer -price base) to retail: 1.320 (t-CO2/1 million yen) was obtained.

Freight-char ges money converted the RFID introduction ef fect (21 1 million dollar) into the Japanese yen (1 15 yen/dollar)).

However, since t he calculation formula which is here is premised on Japan, it is necessary to convert as the U.S.

_For conversion work, Japan-U.S. comparison of a transportation cost ratio was

performed from "transition of the physical distribution functional option top quantity physical distribution cost ratio in Japan and the U.S." (Refer to Fig. 6).

As a result of comparing the 6-year average in 2000 to 2005, the result that a transportation expense ratio of U.S. is 1.16 times as high as Japan was obtained. ____

```
        Year
        2000 2001 2002 2003 2004 2005

        Japan
        3.17 3.13
        2.95 2.77 2.93 2.82

        USA
        3.54 4.38
        3.34 2.63 3.28 3.36

        Fig. 6 Japan-U.S. physical distribution cost
ratio (unit: %)
        s (2005)
```

 $\overline{\text{CO2}}$ emission (t- $\overline{\text{CO2}}$) = T ransportationcharges (21.1 million dollar x 1.15 yen) x $\overline{\text{CO2emission}}$ field unit t $\overline{\text{CO2}}$ / million yen (1.320) x Japan-U.S. transportation expense ratio (1.16) = 37,000t

_It was able to substitute for the CO2 emission cost conversion formula, and the 0.3 -4.1million dollars was able to be obtained as transportation reduction trial calculation of the RFID introduction ef fect of W al-Mart Stores (refer to Fig. 7)

(1) Right Cost to emit CO2 = Field Unit Price (Dollar / tCO2) x CO2 Emission Field Unit Price = \$7 /t - \$12 / t _Transportation reduction _trial_: 0.3 -0.4M\$

(2) CO2 Emission Cost = Field Unit Price (Dollar / tCO2) x CO2 Emission Field Unit Price = \$21 / t - \$1 12 /t _Transportation reduction _trial_: 0.8 -4.1M\$

(3) CO2 Carbon Tax = Field Unit Price (Dollar / tCO2) x CO2 Emission Field Unit Price = \$100 / t _____Transportation reduction __trial_ : 3.7M\$

Fig. 7 C O2 emission cost trial calculation

4. Consideration

Although "rate of the amount reduction of CO2 emission in connection with transportation" 3.2% was obtained as a RFID introduction ef fect of W al-Mart Stores in the chapter, the validity of this calculation method was considered.

(1) Although the trial calculation is made with 8,300 million dollars, is this all considered to be the introductory effect of RFID as an introductory ef fect of RFID?

_A bar code is also arranged in parallel and used in case -RFID application is built. It is necessary to associate the information on this bar code and a RFID tag. The newly introduced RFID tag output printer performs simultaneously the writing to bar code printing and a RFID tag. That is, since it will reconstruct from the existing bar code system to new RFID application, it is appropriate to all also of investment and an effect to consider the expense in connection with RFID _

(2) The validity of

_Rate of the Amount of C O2 emission reduction

= Rate of Energy reduction (T ransportation Relation)

= Rate of ransportation Expense reduction _

_ It can be said that the transportation with correlation positive in ener gy reduction and CO2 emission _reduction has cut down CO2 emission as transportation expense decreased. If it asks for whether it is what% of the physical distribution expense of W al-Mart Stores about the reduction amount of this transportation expense, the rate of CO2 emission reduction in connection with the transportation cost of the Wal-Mart Stores model can be drawn (refer to Chapter 3).

(3) The reason why using Shrinkage and SCM Visualization" as the T ransportation Expense Reduction Amount of Money

If loss and a theft decrease, it will become unnecessary to deliver a basis and a Shrinkage using "a Shrinkage and SC _ visualization" as the transportation expense reduction amount of money by the decrease in income. Moreover , by SCM visualization, if stock decreases in number further, the amount of delivery of goods becomes less so much, and the traf fic related to energy cost can be cut down directly . Although it was expected that other items (warehouse management and stock management) were effective in r elation with ener gy cost, in the operation of warehouse management or stock management, the numerical value which influences ener gy cost directly judged that there was no direct influence in not being clear and transportation cost. If transportation expense decreases, I will surmise that tracks decrease in number so much, and will think that ener gy also decreases so much.

(4) When it takes into consideration that transportation in multi-frequency small quantity will be introduced if stock is cut down in recent years, there is a difficulty in connecting CO2 emission with a simple assumption to expense a little.

In this Wal-Mart Stores example, since neither the amount of CO2 emission reduction nor data required for a guess could come to hand, exact amount-of-money conversions were not completed. Then, from the transportation charge, in order to calculate a certain amount of feeling of a scale, the trial calculation was made on the assumption that a CO2 emission calculation formula.

As the RFID introduction ef fect amount of money in connection with transportation of W al-Mart Stores, a feeling of a scale about 0.3 -4.1million dollars was able to be obtained. However, about accuracy, since this method is substitution when the revision ton.km method, a fuel method, etc. cannot be used as shown in Fig. 4, if compared with other three methods, it is not so good. Furthermore, since it is converting for the U.S. also about CO2emission field unit (kg-CO2/yen), there is a certain amount of limit about accuracy

It depends on judgment whether these amount of money is adopted as an item of the concrete investment ef fect of the person in char ge who introduces RFID on SCM.

As considered above, there is a limit in the numerical value which can come to hand about the number of 3.2% of calculation basis of "the rate of the amount reduction of C O2 emission in connection with transportation", and there is a limit which is the grade with which the actual result value is not taken out from W al-Mart Stores. However , when RFID is introduced on SCM, I think that it was employable as evaluation criteria by showing how calculating "the presumed value of the rate of CO2 emission reduction" as an introductory ef fect item.

Furthermore, if the amount of C O2 emission can be obtained when it is necessary to convert "the amount reduction ef fect of C O2 emission" into the amount of money , a concrete amount of money can be obtained by multiplying by the original unit price.

That is, I think that "the amount conversion amount of money of C O2_emission" is employable as evaluation criteria.

Wal-Mart Stores which is major company retail cannot say that it is about the investment effect in the position of a supplier , although there is the investment ef fect of RFID. If it is made amount-of-money conversion by making the evaluation criteria of an SCM total into the CO2 reduction ef fect about this subject was proposed. However, construction of the social system about "the subject of whom or whose pays concretely and accepts as an economic effect" serves as a future subject in the expense squeezed out by the "amount reduction of C 02emission" in connection with environment.

5. Conclusion

When RFID was introduced among Wal-Mart Stores and suppliers in SCM, I calculated the rate of CO2 emissions reduction in physical distribution costs with paying attention to the energy reduction by traf fic reduction. "Rate of the amount reduction of CO2 emission related to transportation" was 3.2% as a RFID introduction effect item. This became possible to adopt "the rate of the amount reduction of CO2 emission related to transportation" as an introductory effect item before RFID introduction. Furthermore, the method of converting into concrete CO2 emission cost also became possible by proposing a calculation formula as the amount cost conversion method of CO2 emission

6. Futur e Resear ch

As RFID introduction evaluation criteria, adoption of "the rate of the amount reduction of CO2 emission with regard to transportation" was proposed in environmental costs view point. In this paper, the "rate of the amount reduction of CO2 emission" between a major company retail store (W al-Mart Stores) and suppliers was studied. From now on, I will plan to study a rate of the amount reduction of CO2 emission as an introductory ef fect of RFID in transportation tracking system" and "warehouse management system... etc." Furthermore. I will study the structure for maintaining and managing rate of the amount reduction of CO2 emission in SCM, as well, introduction evaluation criteria. adoption of "the rate of the amount reduction of CO2 emission in connection with transportation" was proposed in environmental cost. In this paper , the "rate of the amount reduction of CO2 emission " between a major company retail store (W al-Mart Stores) and a supplier was studied. From now on, it guesses a "physical distribution tracking system" and "it being a rate of the amount reduction of CO2 emission as an introductory ef fect of RFID at warehouse management system" etc." Furthermore, the structure for maintaining and managing rate of the amount reduction of CO2 emission " on SCM is also due to be studied.

References

- 3EID (Embodied Ener gy and Emission (_) Intensity Data for Japan Using Input-Output Tables), "_Environmental load unit price field unit data book by the inter -industryrelations table _" ,National Institute for Envir onmental Studies http://wwwger.nies.go.jp/publication/D031/jpn/table/e mbodied/f embodied.htm
- () Fortune500 and cnn.com http://money .cnn.com/magazines/fortune/for

tune500/2007/

- (_) Funamoto . H, " Special edition:-Circulation reformist" by RFID for which it is pressing", 2005(In Japanese) <http://jp.sun.com/cgi-bin/print.cgi>
- (_) Hotta .T, "An advancement and the investment ef fect" of RFID application", *the operations r esear ch society magazin e* April, 2004, Communication of the Operations Research Society of Japan, pp 31-37 (2004) (In Japanese)
- (_) IPCC, "The 3rd evaluation report (T AR) outline ", *the Meteor ological Agency*, 2001(In Japanese)
- (_) IPCC, "The 4th and the 3rd task force report of the fourth evaluation report, "It turns a policy decision person and is a summary (SPM)" 2007(In Japanese). <u>http://www.gispri.or.jp/kankyo/ipcc/Prt_ipcc_report.html#WG3_</u>
- (_) Japan institute of logistics system s (physical distribution cost investigating committee), "2005 physical distribution cost investigation report" *Japan institute of logistics system s*, March, 2006 (In Japanese)
- (_) Karakasa.Y and Ohta.T ,"Reduction of environmental load'-RFID introduction effect in SCM", *the 20th time national confer ence of JASI* pp.149-152, 2005
- (_) Masui .T(Chairman of CO2 reduction Promotion Committee), " Collection (V er.1) of revised Law concerning the Rational Use of Ener gy correspondence hints : March 15, 2007", Japan institute of logistics system s, 2007 (In Japanese)
- (__) Mitani.S "Visualization of the information by SCEM reforms a supply chain", *ITsValway*,*Autumin*,2003 (In Japanese) <u>http://www.necsoft.com/export/sites/default/</u> <u>itsvalway/pdf/pdsystem01.df</u>
- (__) Miyasita.M, 'Heading for the Betterment of Distr ibution System', Discussion Committee on Industrial Structur e,2005, pp.5 -16 (In Japanese)
- (__) Ohya.M, "Special Edition: Influence of the Wal-Mart Stores IC tag introduction ", *LOD-BIZ 2005-June*", Rhinos Publications Inc, 2005, pp.12-13. (In Japanese)
- (__) Sasaki .T, "Value creation in retail trade (Wal-Mart Stores)", Nagoya University of Commer ce & Business Administration, 47compr ehensive management / management information No. 2, March 2003, pp 155-181(In Japanese)
- (__) The Ministry of Economy , Trade and Industry " 2003 environmental harmony type logistics investigation outline (environmental harmony logistics promotion manual)" *business-affairs information*

policy office council, March, 2004 (In Japanese)

- (__) The Ministry of Economy , Trade and Industry ," The Industrial Structure Council environmental sectional meeting market mechanism special committee (1 1th time) data", December 16, Heisei 17,2005 (In Japanese)
- (__) The monthly material flow's editor , "Special edition: 'a visible physical distribution' -- how far Whether it came" *the monthly material flow 2006 Dec No561* Ryut su Kenkyusha, 2006, pp 41-48 (In Japanese)
- __) Yano Economic Re search Institute, "RF-ID market expectation 2007 Report" , Yano Economic Resear ch Institute ,2007 (In Japanese) http://www.suppe.co.in/proce/ndf/226.ndf

http://www .yano.co.jp/press/pdf/236.pdf