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Abstract  

The challenge associated with data warehousing has escalated in the era of big data with masses of fast-

moving heterogeneous data sources. As organisations attempt to exploit an ever-growing complex and 

dynamic datasphere, traditional data warehousing practices seem to produce systems that are inflexible and 

unable to scale. In a dynamic world of flux and change, systemic process thinking provides an alternative 

paradigm from which to approach the data warehousing challenge. This paper provides a framing of 
semantic data warehousing from such a systems perspective. Semantic data warehousing involves data 

semantification – enriching data with its context and meaning – to achieve higher levels of automation and 

adaptability. The framing elucidates the inherent systems approach of incorporating semantic technologies 

and automated dimensionalisation in data warehousing. It provides a case for the data management 

community to appreciate and accept complexity and multiple perspectives, and to incorporate systemic 

process thinking and semantic relativism into data management practices. 
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1 | Introduction 
Data warehousing comprises methods and practices for collecting, integrating, managing, interpreting, and 

using data in support of data analytics and business intelligence. Managing the content of a data warehouse 

(DW) has always been challenging, but has become more so in the era of big data. First, DW content 

management is a complex function since enterprise information systems that constitute the main sources of 

data are designed for specific purposes (or use cases) and are semantically and structurally heterogeneous. 

Secondly, data architectures have become highly complex and dynamic with large volumes and a variety 

of data moving at high speeds through the datasphere. Manual development of DW content management 

services cannot scale with big data and traditional data warehousing practices are not adaptable enough. 

Addressing the problem requires a systematic and holistic approach (Koehler et al., 2017). 

Current research by the authors involves investigating the use of enhanced data semantics for 

intelligent data warehousing, specifically in support of automated content management. The use of 

Semantic Web technologies is considered since they improve the level of automated processing of 

information on the Web without the need for sophisticated artificial intelligence (Berners-Lee, 2009; Bizer, 

Heath, & Berners-Lee, 2009). It involves semantification of data – enriching data with metadata about its 

context and meaning – so that machines and humans may collaborate effectively within a large and complex 

digital information space, or datasphere. 

Since there are many different perspectives from which the same enterprise information may be 

viewed as well as various analytical requirements that would not be known in advance, determining the 

required semantic metadata and a suitable data model for semantic data warehousing proves to be a difficult 

problem. One could argue that it is a wicked problem as described by Rittel and Webber (1973) because 

(among other characteristics) solution objectives are not clear and it is impossible to know the full 

consequences of a particular implementation. Even the overarching problem situation – of how to better 

manage big data for meaningful and effective use – is defined in terms of a possible resolution or action 

towards improvement, i.e., to semantify data for intelligent machine processing of information. Such a 
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proposed action came about because of a particular explanation of the problem: a lack of suitable data 

semantics in data management practices. However, fundamental concepts of systems approaches, including 

systemic process thinking, are considered appropriate to provide a frame from which the problem situation 

may be approached. 

This paper contains an exposition of a systems approach for semantic data warehousing. The aim 

is to elucidate the systems concepts behind a proposed resolution to the data warehouse content 

management challenge. Section 2 provides background to the problem of content management in data 

warehousing in the era of big data. Section 3 contains an overview of several fundamental concepts of a 

systems approach. In Section 4, these ideas are related to the philosophy of information, conceptual 

modelling, a dimensional view of data, and semantic data warehousing using ontologies. In conclusion, 

Section 5 provides a summary of this systems framing for semantic data warehousing. 

 

2 | Background 
 

2.1 | Designing and Modelling in Data Warehouses 

Traditionally, up to 70% of the DW development effort is attributed to designing and developing the extract, 

transform, and load (ETL) subsystem of a DW (Kimball, Ross, Thornthwaite, Mundy, & Becker, 2008). 

The purpose of the ETL subsystem is to gather, integrate, and consolidate data and loading it into a DW. 

The purpose of the DW itself is to present enterprise-wide information to users and analytics applications 

for business intelligence and decision making. The overall system is therefore often referred to as the data 
warehouse/business intelligence (DW/BI) system. 

The information in a DW is typically presented in multidimensional schemas (or dimensional 

models). Dimensional models are popular because they provide a predictable, standard framework for 

analytics, are business-focused, intuitive and easy to understand, provide fast query performance, and are 

flexible to analytic needs and unexpected changes (Kimball, 1997). Data modelling is performed when 

DWs are designed. The modelling process involves analysing business processes and the associated data 

sources to understand both the information (or analytics) requirements and the available data. The available 

data may be in a variety of formats, including structured and unstructured data. Enterprise information 

system experts must be consulted to gain understanding of the conceptualisations within the source data 

systems, their associated data models, and the meaning of the data within those systems. Once the source 

data is understood, consensus must be reached on how the data will be consolidated, and transformation 

processes or mappings are subsequently developed to present data to users and analytics applications in 

multidimensional schemas. 

This modelling process, as well as the ETL system development, is tedious and requires continuous 

revision as business processes and data sources evolve. However, Kimball and Ross (2013) consider 

automated dimensionalisation the best approach to integrate heterogeneous data for meaningful use in big 

data environments, but it would require relevant semantic metadata and a suitable data model. 

 

2.2 | The Complexity Challenge 

The idea of VUCA, short for volatility, uncertainty, complexity, and ambiguity, is relevant to the world of 

big data and affects the development and evolution of analytics environments like DW/BI systems. For 

example, the concept of a data lake as an architectural approach to big data analytics has gained popularity 

with affordable and scalable cloud storage. However, it was not long before the term data swamp was used 

to refer to these large repositories of raw data that became difficult to maintain and use without contextual 

metadata and proper data governance (Halper & Kobielus, 2021; Rao, 2018). Since larger, hybrid data 

architectures lack application of traditional (relational) database principles, data integrity, consistency, and 

clear meaning are compromised (Helland, 2011). Rao (2018) notes that developing the data lake concept 

must be a process of continuous evolution, and areas of further development include architectural 

standardisation, interoperability, and proper data governance and curation. 

Other emerging approaches to enterprise data management include the data fabric and the data mesh. A 

data fabric incorporates active metadata, knowledge graphs, semantics, and machine learning to support 
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augmented data integration and services. In a data mesh, data are organised into domains according to usage 

patterns, and the domains are then contextualised with business context descriptors. However, any attempt 

to provide a universal platform for data analytics must incorporate a wide variety of technologies with some 

level of standardisation. 

 

2.3 | The Challenge of Standardisation 

Because of rapidly developing data technologies and unforeseeable data use cases, attempting 

standardisation in data analytics environments remains a challenge. In practise, standardisation for data 

interoperability suffers from adoption hesitance as well as a lack of semantic standardisation. Although 

many data interchange standards exist (e.g., CSV, XML, and JSON) and many applications support them, 

interoperability remains limited since the focus is on structural interoperability, not semantic 

interoperability. Efforts toward semantic standardisation often fail due to insufficient feedback from 

practical use into the standards development process (Drath & Barth, 2012). A deadlock situation occurs 

when adoption of a standard is postponed until it reaches higher maturity while widespread application with 

feedback is required to reach that level of maturity. 

 

2.4 | Semantic Web Technologies and Ontologies 

The Semantic Web discipline is considered rich in knowledge about effective data management. 

Mainstream adoption in industry is evident with a wide range of applications, such as those using 

knowledge graphs and Industry 4.0 technologies (Hitzler, 2021). The idea of the Semantic Web involves 

distributing self-describing data via the Web for automated information processing that is meaningful but 

not dependent on artificial intelligence (Berners-Lee, Hendler, & Lassila, 2001). Initially, the Web 

developed mostly for human use of information distributed in document format, and weaving the Semantic 

Web involves semantic markup of an information source with metadata describing the meaning of its 

content. The metadata is generally expressed using controlled vocabularies or ontologies. 

The concepts of linked data and the web of data are closely associated with the Semantic Web. 

Linked data provides connections for information discovery and exploration by humans and computers: 

‘With linked data, when you have some of it, you can find other, related, data’ (Berners-Lee, 2009, para. 

1). The web of data is considered an additional layer on top of the general architecture of the Web, a global 

data graph built using linked data principles and technologies such as the Resource Description Framework 

(RDF) and RDF ontologies (Bizer et al., 2009). The idea of openness underpins development of the web of 

data. Openness in this context refers to anyone publishing any type of data without constraints on the 

ontologies used, complexity, or possible links between data as well as being freely available in non-

proprietary formats (Bizer et al., 2009). 

 

3 | A Systems Approach 
Although what constitutes a systems approach depends on a social dynamic involving a connection between 

systems practitioners and the history of systems thinking, there are generally accepted concepts that provide 

a common grounding (Ison, 2017). A systems approach involves systemic thinking: ‘the understanding of 

a phenomenon within the context of a larger whole’ (Ison, 2017, p. 24), or ‘looking at each component part 

in terms of the role it plays in the larger system’ (Churchman, 1979, p. 103). Three features (or purposeful 

orientations) of systemic thinking are: understanding of interrelationships, commitment to multiple 
perspectives, and awareness of boundaries (Williams & Hummelbrunner, 2010). Surfacing these elements 

brings understanding to the whole. Systemic thinking is particularly helpful when considering complex 

problems or situations. A systemic inquiry is regarded as a systems approach that is adaptive to change 

since it purposefully acknowledges and addresses uncertainty and facilitates social learning within an 

action-oriented cyclic process (Ison, 2017). 

A system is an integrated whole, distinguished by an observer in a situation for having a certain boundary 

and purpose. The boundary determines what is relevant in the context of a particular systemic inquiry 

(Williams & Hummelbrunner, 2010) and the purpose describes ‘what the system does or exists for from 

the perspective of the observer’ (Ison, 2017). Churchman (1979) describes a system as ‘a set of parts 
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coordinated to accomplish a set of goals’ (p. 29) and presents five elements to consider when thinking about 

a system: (1) its overall objectives – relating to its true purpose; (2) its components (parts or subsystems), 

their activities, objectives and performance measures; (3) its environment – what is outside of the system 

relative to its objectives and control; (4) its resources – everything inside the system, used to perform its 

activities; and (5) management of the system. These elements are not trivial to determine and must be 

continuously revisited. 

A system is furthermore regarded as a process, rather than a thing (Hammond, 2017). Asby (2023) 

argues that this process view is ‘fundamental to developing models and understanding of the stability we 

find in our world’ (p. 131). It differs from the traditional (Western) analytic view of the world focused on 

objects and their attributes detached from their context and relations to their environment. In Asby’s 

systemic process thinking, a learning process is essential in a dynamic world, and out there is regarded as 

‘a network of interacting systems that I perceive, but models are developed to the point that systems can be 

recognised from multiple perspectives and now thought of as objects’ (Asby, 2023, p. 144). Object thinking 

thus emerges from process thinking and modelling. 

Common fundamental concepts encountered in popular systems approaches discussed by Reynolds 

and Holwell (2020) are as follows: emergence – ‘the property of a “whole” that arises from the interaction 

of the parts’ (p. 308); hierarchy – referring to levels or layers within the whole; communication – including 

development of mutual understandings as well as the exchange of information; and control – relating to 

corrective actions. The concept of hierarchy relates to a multilayered structure of systems within systems – 

a holarchy (Hammond, 2017). Communication also involves feedback, an interconnection or circularity 

commonly found in systems, so that systemic awareness is also associated with understanding cycles, 

counterintuitive effects, and unintended consequences in systems or situations (Ison, 2017). 

An iterative process to address a complex situation or problem provides an opportunity to learn. 

Each attempt at resolution results in better understanding of a situation: new insights are gained and often 

involve sweeping in other perspectives or aspects of the larger system not considered before (Churchman, 

1982; Ulrich, 1994). Meaningful learning requires continuous and critical reflection by the practitioner, but 

also interaction with a wider community of practice, systems, and beyond (Asby, 2021; Reynolds & 

Holwell, 2020). A systems approach acknowledges that there is no ultimate solution to be found. In a 

dynamic environment, it is a matter of evolution: ‘the processes of feedback and learning play a much more 

pivotal role, and the reductionist paradigm [of traditional science] becomes increasingly inadequate’ 

(Hammond, 2017, p. 4). 

In a systems approach, the use of models (and diagrams) facilitates the learning process, and the 

models remain conceptual constructs not to be confused with either representations of actual reality or the 

end-goal of the exercise (Reynolds & Holwell, 2020). A frequent analogy used to describe this notion is 

‘the map is not the territory’, whether the map refers to a data model (Kent & Hoberman, 2012, p. 22) or 

any other type of conceptual model (Bawden, 2010, p. 53). Models are developed from a particular 

perspective and for a specific (subjective) purpose that determines the aspects of the real world that are 

represented (Asby, 2021). 

 

4 | A Systems Framing for Semantic Data Warehousing 
 

4.1 | Philosophy of Information when Modelling Databases 

In 1975, the ANSI/SPARC Study Group on Database Management Systems published a report on their 

three-level approach to modelling databases. They introduced a framework with a conceptual information 
schema as a bridge between internal schemas (database-level representations) and external schemas (user 

or application views of the information): ‘The framework is designed to support change and evolution in 

an enterprise by providing a suitable basis for generating and controlling mappings between internal and 

external schemas’ (Bachman et al., 1975, p. 1). The incentive for the three-level approach was achieving 

data independence and the foreseen benefits of the conceptual schema were (1) to provide a relatively stable 

and formalised central frame of reference of an enterprise’s information model that (2) serves as a starting 

point for a data dictionary describing information assets and how they are used, (3) serves as a central 
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authority for security and integrity management, (4) reduces the number of mappings between internal and 

external schemas, and (5) acts as an insulator between changes in internal and external schemas. 

In Chapter 5 of their report, the study group lays out their notion of how data models are devised. 

Three realms of interest in the philosophy of information are depicted (Exhibit 1), reality, the conceptual 

realm, and the data realm(s). The conceptual realm entails how reality is perceived and converted into 

mental and symbolic models. Models are continuously refined through scientific processes and abstraction. 

The best model of reality relates to our total conceptualisation of reality. Through engineering abstractions, 

limited models are developed and formally described for a particular purpose (relating to a universe of 
discourse) while irrelevant aspects are deliberately ignored. Symbolic abstraction involves using a standard 

language to formally describe the conceptualisation, resulting in a conceptual schema from which internal 

and external schemas may be derived. 

 

Exhibit 1.  Realms of Interest when Modelling Information (Bachman et al., 1975). 

 

 
 

 

Exhibit 2 presents an adaptation of these realms of interest. First, the three realms (reality, conceptual, and 

data) may be considered nested: our conceptualisations and implementations into symbolic and derived 

models are part of reality and further influence our perceived reality. Besides there being multiple mental 

models (or conceptualisations) of both reality and a universe of discourse, there are many conceptual 

schemas, including different logical data models (e.g., entity-relational, multidimensional, object-oriented, 

object-role, etc.) and modelling languages (e.g., XML, UML, ORM 2.0) so that mappings between different 

conceptual schemas are required. 
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Exhibit 2.  Realms of Interest when Modelling Information: An Adaptation. 

 

 
 

 

Regarding our mental models of the data realm, Kent and Hoberman (2012) explain that ‘people in the data 

processing community have gotten used to viewing things in a highly simplistic way, dictated by the kind 

of tools they have at their disposal’ (p. 25). Our mental models about data and information are influenced 

by the industrialised data realm. Kent is furthermore of opinion that concerns about the semantics of data 

are aggravated when computerised systems are incorporated into record keeping facilities and suggests that 

it is due to a larger data realm and a loss of mutual understanding of what the data means among a larger 

community. Hoberman subsequently suggests that it is due to three aspects: system complexity, role 

specialisation, and tainted thinking. System complexity refers to having multiple applications with diverse 

purposes, and thus diverse views of interrelated information. Role specialisation happens when fewer 

people in a growing organisation understand the larger picture. Tainted thinking involves thinking about a 

business activity in terms of the software used (even though the software tends to change more often than 

the actual activity). Tainted thinking is akin to WEIRD thinking (Western, Educated, Industrialised, Rich, 

and Democratic) that tends to be more analytical, with a focus on objects and their attributes detached from 

their context, and associated with abstract, symbolic representational systems (Henrich, Heine, & 

Norenzayan, 2010). With WEIRD thinking models are ‘assumed to be a description of the thing as it is, 

rather than what we would perceive in the particular circumstances in which we were looking’ (Asby, 2023, 

p. 132). 

When considering these realms as a holarchy with multiple symbolic models and conceptual 

schemas, several questions remain: What other holons and relationships may be present? What exactly is 

the role of tainted thinking within our models? Should we aim for creating a single global conceptual model 

(a canonical conceptual schema) and modelling language? 

 

4.2 | Conceptual Modelling in the Era of Big Data and Distributed Computing 

Ptiček, Vrdoljak, and Gulić (2019) argue that the big data integration challenge needs to be addressed on a 

higher level of abstraction, i.e., the conceptual data model, that this modelling should be evolutionary and 

iterative, and that it can be performed using Semantic Web technologies. Many other attempts to integrate 

data from heterogeneous sources involve schema extraction and matching techniques that focus on creating 
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mappings between lower-level data representations. However, big data sources typically lack clear schema 

information and direct mappings between derived data models was never the intend with the three-level 

approach to modelling databases (cf. Exhibit 2). Moreover, schema matching (manual or automated) is 

complex and has a high risk of being inaccurate, as it is always incomplete and cannot cater for all possible 

(future) schema representations (Miller et al., 2001). This view clearly relates to a systems perspective – 

appreciating the functions of different levels of abstraction and approaching a problem situation in an 

evolutionary manner. 

When modelling for integration on a higher level of abstraction, considerations for conceptual 

models and canonical conceptual schemas become relevant. The benefits of having a canonical conceptual 

schema include a reduced number of mappings between different representations. Saltor, Castellanos, and 

García-Solaco (1991) believe that ‘databases are to represent conceptualisations that people have about 

reality, and to be interpreted as such conceptualisations’ (p. 44). Also, ‘a conceptualisation is never 

absolute, it is relative to the point of view of a user or group of people, because different persons perceive 

and conceive reality in different ways’ (p. 45). Apart from being a subjective process, creation of a 

conceptual data model is furthermore regarded as a highly arbitrary process (Fisher & Sheth, 2004; Kent & 

Hoberman, 2012). The same universe of discourse may be modelled differently by different data modellers. 

Because of these reasons, any data model that must play the role of a canonical data model for database 

interoperability must incorporate semantic relativism. Semantic relativism is described as ‘the degree to 

which [a database] can accommodate all these different conceptualisations (of the same real world)’ (Saltor 

et al., 1991, p. 45). The systems orientation of multiple perspectives is highly relevant to this view. It 

furthermore incorporates the core systems concept of communication (information exchange and mutual 

understanding) as well as consideration of models as conceptual constructs that are not absolute. 

Another argument for moving the focus away from low-level data integration and technology-

specific attempts to address the problem of data semantics is provided by Borgida and Mylopoulos (2004): 

 

The problem [of data semantics] arises from general trends towards open, distributed 

computing, where it is no longer possible to assume that the operational environment of 

an information source is closed and stable. Accordingly, we should be looking for solutions 

that are general, i.e., not Web technology-specific. (p. 24) 

 

This argument relates to the proposal of the authors for a general solution that incorporates 

intentional semantics to truly understand the meaning of data. While research into Web technologies at the 

time focused on providing semantic mappings between different conceptualisations (e.g., two ontologies or 

two database schemas) describing the what and when aspects of a subject area, they neglected aspects of 

the how relating to the purpose and stakeholder goals within the conceptualisations. Borgida and 

Mylopoulos (2004) are of opinion that ever more expressive modelling languages developed for Web 

technologies are not enough; semantics describing the intent of a design must be incorporated into the 

modelling process, i.e., its purpose and perspective, to ensure trust and understanding. 

 

4.3 | A Dimensional View of Data with the Kimball Approach 

In addition to providing a predictable and standard framework for analytics, business process dimensional 

models are considered intuitive and flexible to analytic needs and unexpected changes (Kimball, 1997). 

When data is dimensionalised, it is conceptually divided into facts (business process measures), and 

dimensions describing the context of the facts. This context may include any attribute or characteristic 

associated with a measurement event and describes the who, what, when, where, why, and how that were 

true at the moment the fact was recorded (Kimball et al., 2008). An example of a dimensional model for 

retail sales is provided in Exhibit 3. In this case, the dimensional depiction is star shaped. It is also common 

to think of (and represent in OLAP databases) these models as multidimensional cubes. 

 

Exhibit 3.  A Dimensional Model for a Retail Sales Business Process. 
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Facts are typically generated (and recorded in an operational information system) when some event occurs 

and are conceptually grouped together in a business process related to the event. For example, when a 

product is sold, the quantity, sales price, and sales amount are facts associated with the Retail Sales business 

process. 

The dimensions, like Date, Customer, Product, Store, etc., are mutually understood concepts related 

to the business process, and typically contain one or more natural hierarchies. For example, the Store 

dimension may contain a hierarchy in which the location of the store aggregates from Street, City, Region, 

and Country all the way up to All Stores. The Date dimension rolls up from a Calendar Date to Month, 

Quarter, and Year. 

The case for dimensional modelling in data warehousing are discussed in A dimensional modeling 

manifesto (Kimball, 1997). It is also core to the Business Dimensional Lifecycle (also known as the Kimball 
Lifecycle) methodology for data warehousing that has the following three core principles (Kimball et al., 

2008): 

• Focus on the business. Design and development centres around understanding what drives 

the enterprise; it relates to the overall objectives and performance measures. 

• Dimensionally structure the data that is delivered for BI and decision-making (using 

business process dimensional models as described above). 

• Iteratively develop the overall DW/BI system, one business process dimensional model 

at a time. 

 

Since many big bang attempts to develop DW/BI systems fail, the Kimball approach prescribes 

incremental development based on a data warehouse bus architecture, or matrix, as depicted in Exhibit 4. 

The bus matrix provides an overview of the whole enterprise: its constituting parts, i.e., the business 

processes, are listed in rows while relevant resources and aspects of the environment are listed as shared or 

conformed dimensions on the columns; the dots on the matrix intersections indicate how they are related. 

This architecture is considered vital for communicating, planning, and designing a DW/BI system (Kimball 

& Ross, 2013) and provides a framework, or blueprint, for incremental, adaptive designs and development 

over distributed systems (Kimball & Ross, 2016). It supports a divide-and-conquer approach that 

incorporates a learning process: each iteration of a development programme involves analysing a single 

business process in detail to determine which facts (or event measures) and dimensions are relevant from 

the perspective of the subject area stakeholders. Each business process may also involve more than one 

internal activity that is monitored in the value chain of the enterprise so that it may spawn several groups 

of related facts (or fact tables), each such group having a certain grain (Kimball et al., 2008). The grain 

correlates with one step in an activity for which data is recorded in the value chain, e.g., when a sales 

forecast is made for a product at a store, or when a customer returns an item, and determines the dimensions 
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and dimension levels that naturally falls out of the activity. In any subsequent iteration for another business 

process, what was learnt and developed during previous iterations, including the business vocabulary and 

dimensions, is reused and refined to incorporate the new perspective into the overall architecture. This 

process naturally involves identifying commonalities and differences of various perspectives. 

 

Exhibit 4.  An Enterprise Data Warehouse Bus Matrix, Adapted from Kimball and Ross (2013). 

 

 
 

 

The bus architecture and dimensional models are independent of any technology, or the way data is 

modelled in operational information systems. Dimensional models are also highly flexible to change and 

gracefully extensible. Because of the standard, symmetrical way dimensions are associated with facts, 

addition of new facts, dimension attributes, and even completely new dimensions, has no effect on how 

existing data is modelled or accessed by users and applications. Therefore, the use of dimensional models 

anticipates the continuous change and evolution of analytics needs and available data (Kimball & Ross, 

2016). 

Essential to the (multi-) dimensional view of data is the hierarchical structure of cubes, as well as 

within dimensions themselves. This hierarchical nature of dimensional models allows for drilling up, 

drilling down, and slicing or dicing (adding or removing various dimensions) to provide different 

perspectives on the data. 

 

4.4 | Semantic Data Warehousing and the Use of Ontologies 

The primary motivation behind the Semantic Web is to create a highly interconnected web of data – the 

more connected, the better the context and discoverability of new data. Realising such a high level of 

integration and interoperability requires a complete language with universal expressive power capable of 

representing all kinds of data and views of information. The (conventional) approach to organise 

information based on global consistency requirements, such as in traditional knowledge representation 

models, is considered a hinderance to knowledge becoming webised; Berners-Lee (1998) argued that 

‘centralised concepts of absolute truth, total knowledge, and total provability’ must first be eliminated 

(Knowledge Representation goes Global section). When considering an appropriate language to be used, 

Heflin, Hendler, and Luke (2005) also describe the nature of the Web as being free from centralised 

authority (i.e., distributed), highly dynamic (including the ontologies used), very large, and hence also an 

open world in which complete reasoning algorithms are not feasible and the assumption that all knowledge 

is available (the closed-world assumption) cannot be made. The ideas behind the Semantic Web are in 

correlation with both holism and pluralism. Linked data principles and the aim towards highly 

interconnected data promote holistic views of data, while rejection of global consistency requirements 

recognise the pluralistic nature of information and its uses. 

Semantic Web technologies and ontologies are considered vehicles for unifying different 

conceptualisations, and thus also data models and sources. Ontologies are suitable for data interchange and 

integration, and domain ontologies are considered the only artefacts ‘to reconcile, at the semantic level, 
heterogeneous data source models’ (Jean, Pierra, & Ait-Ameur, 2005, 2006, p. 242); to fully automate 
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integration, ontologies must be explicitly represented in databases. Baclawski et al. (2018) furthermore 

assert: 

 

The use of ontology for context is a unifying conceptual model: a common language across 

the enterprise. In order to enable interoperability among applications or re-use of data 

across the enterprise, what were implicit contexts for each set of data must become explicit 
ontological classes and relations within the ontology. … If ontologies are able to formally 

specify their contextual assumptions, then logic can be applied to cross the contextual 
boundaries. (pp. 5,7) 

 

The contextual assumptions include not only the terminology used in a system or data set but also 

information related to the granularity and provenance of the data, as well as the way time and spatial aspects 

are represented. Ontologies are furthermore purposefully structured with hierarchies – another fundamental 

systems concept – to lay bare the intrinsic relationships between constructs in a conceptualisation. 

Different ways in which to incorporate Semantic Web technologies and ontologies into databases 

and data warehousing have been proposed. Fankam, Jean, Bellatreche, and Aït-Ameur (2008), for example, 

proposed an extended ANSI/SPARC architecture with an ontological layer containing explicit semantic 

information of the data in terms of three types of ontologies: conceptual canonical ontologies (representing 

shared conceptualisations), nonconceptual canonical ontologies (representing different views of the data), 

and linguistic ontologies (representing word definitions or contextual usages). Gacitua, Mazon, and Cravero 

(2019) explored and summarised the use of Semantic Web technologies in data warehousing. They 

concluded that adoption in industry is inhibited by a technological gap and query the applicability and 

transferability of current research findings to industry. Antunes, Cardoso, and Barateiro (2022) also provide 

a review of approaches to incorporate ontologies into DW/BI systems. They found that ontologies can 

‘support, simplify and help automate design and development tasks and processes in DW/BI systems’ (p. 

12), but that they are primarily used for intermediary support in DW development and design, and not 

typically for data enrichment per se. The authors further argue that data enrichment must be considered to 

cope with the growing complexity associated with big data. 

 

5 | Conclusion 
The challenge associated with data warehousing – attempting to integrate and consolidate heterogeneous 

data sources – has escalated in the era of big data. Traditional data warehousing practices cannot scale and 

adapt in such a messy situation involving multiple, often conflicting perspectives, as well as high levels of 

complexity and uncertainty. This paper contributes to the field of data warehousing by providing a systems 

frame for an approach to semantic data management that explicitly incorporates systemic awareness. This 

framing can be summarised as follows. 

The field of data warehousing and business intelligence is inherently antireductionist (or holistic) 

and systemic. The purpose of a DW is to provide a platform for analytics with as many integrated views of 

information as possible – a 360-degree view of the enterprise – to enable discovery of interconnection 

between phenomena and emergent properties, analysis of root causes, and insight into ways beneficial 

change may be employed. The business intelligence analytics cycle itself is, in essence, a feedback loop, 

described by Kimball (2016) as a cycle of (1) monitoring what is happening, (2) identifying exceptional 

performance situations, (3) determining the causal factors, (4) modelling different decision or action 

alternatives, and (5) tracking actions taken by feeding them back into the DW and returning to step (1) to 

evaluate the outcomes. The DW/BI system is the management information system proposed by Churchman 

(1979) for recording ‘the relevant information for decision-making purposes and specifically [for telling] 

the richest story about the use of resources’ (p. 39). The DW provides the necessary information regarding 

the enterprise components, resources, environment, and performance, and the BI component supports the 

management of the enterprise through the analytics function as a purposeful intervention.  

A dimensional view of data is process-oriented: objects such as facts (event measures) and dimensions 

emerge naturally as mutual understandings within an enterprise. It furthermore provides a view of this 
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information that is naturally hierarchical in structure, enabling high-level and detail-level analysis. 

Dimensional models are highly flexible to change and the Kimball approach using the bus architecture is 

designed to be iterative and adaptable. From a systems perspective the bus architecture model is a 

demonstration of wholistic planning. It assists systems designers to understand the enterprise as well as the 

consequences of any change. A bus matrix provides a high-level view of an enterprise as a system in which 

its value chain is visualised, with the subsystems represented as business processes, and resources and 

environmental factors represented as dimensions. The bus matrix not only illustrates the shared information 

and interaction between the different subsystems, but also their boundaries.  

A single, relatively stable, conceptual database schema as a mediator between different derived 

data models (as proposed by the SPARC Study Group) can no longer be assumed. Different symbolic data 

representations require adaptive mappings that may be achieved using semantic technologies and 

ontologies. However, mere mappings between various data models are not enough. Conceptual models 

should include intentional semantics and contextual assumptions about the subject area, as well as semantics 

about its constructs. Conceptual modelling must, furthermore, be approached as an evolutionary process 

that remains independent of specific technologies. Automated dimensionalisation of data based on a bus 

architecture model is considered appropriate but would also require semantification of data for that purpose. 

Any universal model used for data semantification must have a high level of semantic 

expressiveness and support for semantic relativism. Ontologies provide a vehicle for unification of 

conceptual models across different system boundaries. Ontologies are naturally hierarchical in structure, 

and it is possible to define canonical, noncanonical, and linguistic ontologies to integrate conceptualisations 

between various systems on various levels of abstraction. 

This systems framing for semantic data warehousing provides the following potential benefits for 

the data management community. The community would appreciate and accept complexity, multiple 

perspectives, and the need for semantic relativism within metadata. Because it provides both stability and 

flexibility, business process dimensional modelling and the bus architecture model would be supported as 

a means for data management that is sustainable, even future responsive, in the era of big data.  

Future research opportunities include the development of a formal system for semantic content 

management in support of automated dimensionalisation of data. 
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