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Abstract 

Scheduling is central to the practice of project management and a topic of significant interest 

for the operations research and management science academic communities. However, a 

rigour-relevance gap has developed between the research and practice of scheduling that 

mirrors similar concerns current in management science. Closing this gap requires a more 

accommodative philosophy that can integrate both hard and soft factors in the construction of 

project schedules. This paper outlines one interpretation of how this can be achieved through 

the combination of discrete event simulation for schedule construction and system dynamics 

for variable resource productivity. An implementation was built in a readily available 

modelling environment and its scheduling capabilities tested. They compare well with 

published results for commercial project scheduling packages. The use of system dynamics in 

schedule construction allows for the inclusion of generative mechanisms, models that 

describe the process by which some observed phenomenon is produced. They are powerful 

tools for answering questions about why things happen the way they do, a type of question 

very relevant to practice. 

Keywords: project scheduling, hybrid simulation, system dynamics, discrete event 

simulation, multi-method modelling. 

 

Introduction 

Scheduling, the construction and management of a rational time-based plan, is central to the 

practice of project management. The sixth edition of the Guide To The Project Management 

Body Of Knowledge (PMI 2017) recognises this more explicitly than previous editions, 

changing of name of the relevant knowledge area from time management to schedule 

management, more accurately describing the skill set the competent project manager is 

expected to master. The Project Management Institute (PMI), the premier standards setting 

institute for project management standards and practices, further emphasises the importance 

of scheduling by also publishing a practice standard for scheduling (PMI 2011). This 

distinguishes between scheduling methods, scheduling tools and the schedule model. 

Methods describe ways of constructing schedules, tools are usually software packages that 

embody the rules defining methods, and schedule models are created when methods are 

applied, using tools, to the specific data describing a project.  

 

Scheduling is also a topic of significant interest for the operations research and management 

science academic communities. Research has focused mainly on scheduling methods; 

procedures for establishing the efficient allocation of time and resources to a set of activities, 

described generally as the Resource Constrained Project Scheduling Problem (RCPSP). 

Calculating an exact and optimal solution for a single project instance of the RCPSP is NP-

hard (Demeulemeester & Herroelen 2002, pp. 203-5) and the challenge has attracted much 

interest (Hartmann & Briskorn 2010), requiring the RCPSP research community to establish 

a common language, borrowed from mathematics, to efficiently describe the problem 
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(Brucker et al. 1999; Herroelen, Demeulemeester & De Reyck 2001). The community 

recognises however, that few of the published exact or metaheuristic scheduling methods 

have been used in practice (Herroelen 2005). 

 

This is evidence of a gap between the research and practice of scheduling. Scheduling 

methods supported by the tools that practitioners rely on, do not attempt to obtain exact or 

optimal solutions to the RCPSP, instead settling for computationally less intensive solutions 

using methods based on heuristics (Trautmann & Baumann 2009). Heuristics are relatively 

simple rules for deciding how constrained resources should be allocated to the various 

activities requiring them (Artigues & Rivreau 2008; Demeulemeester & Herroelen 2002, pp. 

264-300). Their simplicity allows them to be applied to the large precedence networks that 

occur in practice (+500 tasks) which would often result in unacceptable computing time if 

approached using an exact solution procedure. Not being exact solutions, means that 

schedules constructed using heuristics, cannot be guaranteed to be optimal. Results from 

scheduling tools popular with practitioners vary significantly in how closely they approach 

known optimal solutions, depending on the type of heuristic applied, whether more than one 

heuristic is used and the network and resource characteristics of the precedence network 

tested (Kastor & Sirakoulis 2009; Trautmann & Baumann 2009). 

 

Further widening this gap is the fact that new scheduling challenges are continually being 

presented, as our understanding of the complexity of the project environment evolves. In his 

2003 review of the contribution that mathematical modelling had made to the practice of 

project management, spanning the previous fifty years and dealing extensively with the 

RCPSP, Williams highlighted the inclusion of systemic and dynamic effects as particularly 

important. He noted that some researchers had begun to include such concepts in their 

planning assumptions, with the aim of explaining observed behaviours of projects based on 

feedback mechanisms and ‘soft factors’. These soft factors being described as qualitative, 

intangible or otherwise difficult to quantify concepts, that nevertheless had modelling utility 

(Williams 2003). 

 

Soft factors also form a significant line of enquiry in the Rethinking Project Management 

literature (Svejvig & Andersen 2015; Walker & Lloyd-Walker 2016). One view sustained 

within this literature is that of the project as a complex dynamic system, whose behaviour is 

modified by rework cycles (Jalili & Ford 2016), the social nature of projects (Small & 

Walker 2010), human reactions to stress and burnout (Pinto, Patanakul & Pinto 2016) and 

myriad other, hard to quantify but observable effects.  

 

The RCPSP community has already begun including one such soft factor as a planning 

assumption; learning curves. These describe assimilation rates for new skills and can be 

formulated in various ways (Anzanello & Fogliatto 2011). Learning curves have been 

included in scheduling methods based on linear programming (Mályusz & Varga 2017) 

design structure matrices (Huang & Chen 2006) and discrete event simulation (Yang et al. 

2014). Research into scheduling with learning curve effects has been sufficiently broad in 

approach to prompt more than one state of the art review (Azzouz, Ennigrou & Ben Said 

2017; Biskup 2008).  

 

Soft factors descriptive of other interesting phenomena are also being included in 

formulations for scheduling problems other than single projects. These include; variable 

resource productivity in flow shop scheduling (Benavides, Ritt & Miralles 2014), models of 

fatigue for nurses in shift scheduling (Lin et al. 2013), for air traffic controllers (Wang & Ke 
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2013) and express delivery services (Lau, Woo & Choi 2006), and workforce scheduling with 

multitasking (Zhu, Li & Chu 2017) and skills and personality attributes (Othman, Gouw & 

Bhuiyan 2012). The increasing diversity in applications and approaches has even prompted a 

proposed taxonomy for integrating scheduling theory and soft factors (Lodree Jr, Geiger & 

Jiang 2009). 

 

The inclusion of soft factors in project scheduling using so many different formalisms adds to 

the already considerable diversity evident in approaches to the RCPSP (Hartmann & Briskorn 

2010). This diversity, whilst being indicative of a vibrant research community, may not 

always be a positive force, particularly if we espouse normative aims for our research. If we 

intend to inform practice we must remember who our audience is, or rather who they have 

been taught to become through their training in project management, with its emphasis on 

positivist epistemology, deductive reasoning and quantitative or reductionist techniques 

(Pollack 2007; Shepherd & Atkinson 2012). Through the positivist lens, which favours 

generalizable solutions, diversity can look like case-based research, where the relevance of 

findings is restricted to environments with similar attributes. When novel methods are 

operationalised using unfamiliar tools and the results presented in nonstandard formats it is 

difficult for the practitioner to recognise where relevant similarities exist.  

 

Similar concerns have also been current in the broader discipline of management science and 

have been characterised as the rigour-relevance debate (Starkey & Madan 2001). This debate 

sees the ontological and epistemological differences between the dominant philosophical 

paradigms, the empirical-analytical, the interpretive and the critical, as being the source of the 

rigour-relevance gap. Bridging the gap requires the acceptance of a more accommodative 

philosophical framework and Mingers has been a strong proponent of Critical Realism 

(Mingers 2000, 2003, 2006a, 2011, 2015). 

 

Critical Realism is a transcendental, realist, naturalist and critical philosophy of science 

(Bhaskar 1993, 2014; Bhaskar & Hartwig 2008) and a proper treatment of the argument for 

its usefulness in bridging the rigour-relevance gap is beyond the scope of a single paper on 

project scheduling. The element abstracted for this paper is the concept of the generative 

mechanism which Critical Realism posits resides in the domain of the real, has the power to 

create events in the domain of the actual which may or may not be observed in the domain of 

the empirical (Mingers 2006b).  

 

Generative mechanisms are explanatory mechanisms; they describe the process by which an 

observed phenomenon is produced. Explanatory mechanisms have been contrasted with 

causal mechanisms in the philosophy of science for their utility in furthering research 

(Gerring 2007; Glennan 2002; Machamer 2004). Explanatory mechanisms can be physical 

explanations of how some observed phenomenon is generated or they can be epistemic 

explanations where the observation is understood within the context of what is already known 

(Illari & Williamson 2013; Illari & Williamson 2011; Williamson 2013).  

 

The RCPSP research community needs to continue developing new and better scheduling 

methods, expanding the range of factors included as planning assumptions, but also needs to 

close the gap between research and practice. This paper proposes a method by which 

generative mechanisms utilising epistemic explanations of observable and potentially 

intangible factors can be included in project schedule construction. This will allow rigour to 

be maintained whilst potentially increasing relevance to practice by expanding the range of 

concepts used in the construction of project schedules.  
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The proposal includes two important assumptions. Firstly, that soft factors are best described 

as continuous rather than discrete variables. And secondly, that replicability and 

reproducibility require an open source approach to the tools used to demonstrate new 

methods (Kendall et al. 2016). 

 

Describing soft factors as continuous variables allows the adoption of system dynamics as the 

formal system for modelling their behaviour. The system dynamics view that “the structure of 

a system gives rise to its behaviour” (Sterman 2000, p. 28) corresponds well with generative 

mechanisms in Critical Realism’s domain of the real (Mingers 2000, p. 1264). Since 

quantitative modelling in system dynamics is a simulation approach, all other calculations 

also need to occur within a simulation environment, leading to the adoption of discrete event 

simulation for scheduling (Lu 2003). Simulation also leads to the adoption of heuristics-based 

scheduling since algebraic methods are incommensurable with the treatment of time in 

simulations. Combining system dynamics and discrete event simulation makes this a hybrid 

simulation approach which significantly constrains the options for implementation, bearing in 

mind the goal of replicability and reproducibility. The approach described below has been 

implemented in the AnylogicTM multimethod modelling environment , describes as “is the 

standard in multimethod modeling technology, delivering increased efficiency and less risk 

when tackling complex business challenges” on the developer’s website (AnyLogic 2019). 

Literature Review 

In the canon of project management knowledge, scheduling is categorised as a planning 

activity and planning forms a very large part of what a competent project manager is 

expected to know. The Guide to the Project Management Body of Knowledge (PMI 2017) for 

instance, lists 49 management processes, 24 of which are devoted to planning. 8 of these 

planning processes are directed towards establishing the detail of who does what, when.  

Research also shows that the preferred tool for summarising the detail resulting from this 

planning activity is the Gantt chart (Besner & Hobbs 2004; Jugdev et al. 2013).  

 

In terms of scheduling methods, the three most popular project management bodies of 

knowledge (APM 2012; PMAJ 2005; PMI 2017) focus almost exclusively on Critical Path 

Method (CPM) and leave the management of resource constraints to the commercially 

available software packages. Whilst these packages are also capable of Program Evaluation 

and Review Technique (PERT), stochastic scheduling remains less popular, in part due to 

ongoing concern over its assumption of a beta distribution (Trietsch et al. 2012; Vanhoucke, 

Coelho & Batselier 2016). 

 

The popular commercial project scheduling packages all use heuristics-based scheduling 

methods for constraining resource usage and their capabilities have been the subject of 

periodic research. Comparison of the scheduling and resource allocation capabilities of the, 

often proprietary, methods embedded in commercial software, has required the invention of 

the capability to generate standardised project network data for the construction of test cases 

(Kolisch & Sprecher 1995) and the publishing of these test cases for use by the RCPSP 

community (Kolisch & Sprecher 1997). This has enabled comparison to be made using either 

variation from the unconstrained minimal makespan (Baumann & Trautmann 2016; Kolisch 

1999) or from the growing database of published optimal solutions for test cases (Trautmann 

& Baumann 2009; TUM 2019) as well as data from real projects (Kastor & Sirakoulis 2009). 

Makespan is the technical term for the overall duration between the first and last tasks in a 

schedule. 
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The majority of research effort however, seems to have been focused on the RCPSP as an 

exercise in solution optimisation, with variants involving different formulations, or constraint 

relaxations (Artigues 2008; Demeulemeester & Herroelen 2002). This intensely mathematical 

approach has drawn criticism. Williams for instance observed that much of this research 

“languishes in journals” rather than finding use in project practice (Williams 2003, p. 3) and 

Herroelen similarly observed that “many project scheduling procedures have not yet found 

their way to practical use” (Herroelen 2005, p. 413). Herroelen’s approach was to construct a 

hierarchical project planning and control framework to help close the rigour-relevance gap, 

under which, this research would be described as operational resource capacity planning. 

Williams, in contrast, advocated drawing on the view of projects as dynamic systems, a 

perspective he has had a long engagement with (Williams 1999, 2005; Williams et al. 1995).  

 

Saaty too thought that operations research should be more than just ‘optimisation subject to 

constraints’ and that the community “would make a vast creative leap if it were to look 

seriously into models that handle intangibles and their measurement, because most of our 

problems deal with such factors” (Saaty 1998, p. 13). Such views have been current in the 

systems perspective for much longer. Forrester, the founder of system dynamics advised 

against “the omission of admittedly highly significant factors (most of the ‘intangible’ 

influences on decisions) because these are unmeasured or unmeasurable. To omit such 

variables is equivalent to saying they have zero effect … probably the only value that is 

known to be wrong” (Forrester 1961, p. 57).  

 

Forrester’s discipline of system dynamics has a long history of building generative 

mechanisms for observed project behaviour using causal loop and stock & flow diagrams that 

combine both tangible and intangible concepts (Love, Park & Han 2013; Sterman 2007). 

Some have been expanded into simulation models to animate this generation of behaviour 

and show how such concepts can interact, over time, in complex and dynamic ways (Park 

2001). This analysis of the dynamics of projects has been considered “one of the most 

successful areas for the application of system dynamics” (Lyneis & Ford 2007, p. 157) and 

represents a rich source of material that has yet to be applied to project scheduling.  

 

The project management community has made little use of this research. Rumeser and 

Emsley investigated the challenges of using system dynamics in project management. Their 

top five issues were; project manager’s belief that they were already doing the right thing, the 

perception of system dynamics as ‘scary’, the perception of models as ‘one-time solutions’, 

the perception that the approach was not practical and the prelevence of attribution error 

regarding cause-effect relationships in the project environment (Rumeser & Emsley 2016).  

 

The use of system dynamics for planning, rather than post hoc analysis remains rare, with a 

focus on construction projects (Hany et al. 2018; Lee, Peña-Mora & Park 2006; Peña-Mora & 

Li 2001). Within this research, system dynamics has also been combined with discrete event 

simulation, the former for modelling feedback effects from management decision making and 

the latter operational construction processes (Lee, Han & Peña-Mora 2007; Moradi, 

Nasirzadeh & Golkhoo 2015; Peña-Mora et al. 2008).  

 

The technical difficulties involved in combining these two modelling approaches are a 

significant barrier to new entrants (Alzraiee, Moselhi & Zayed 2012; Alzraiee, Zayed & 

Moselhi 2012). However, commercial modelling software seems to have solved many of 

these issues. It is now possible to combine system dynamics, discrete event simulation and 
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agent based modelling in a single off-the-shelf software tool such as AnylogicTM which is 

based on the widely used Java programming language (Borshchev 2013).  

 

Whether the combination of system dynamics and discrete event simulation is described as 

multi-method, mixed-method, or hybrid modelling, researchers already using this approach in 

other fields believe it should be considered “no big deal” (Pidd 2012). An extended analysis 

has been made, focusing on examples from healthcare, of the practical and philosophical 

difficulties of combining these two modelling approaches, with the conclusion that whilst 

technically challenging they are not paradigmatically incommensurable (Brailsford, Churilov 

& Dangerfield 2014; Morgan, Howick & Belton 2017; Rotaru, Churilov & Flitman 2014).  

 

System dynamics models of projects however, including those referenced above are generally 

high-level descriptions which aggregate all project tasks into a single smooth flow that best 

fits the calculus-based mathematics underlying stock & flow structures. This, of course, 

eliminates the very detail that resource constrained project scheduling seeks to manage. The 

system dynamics community has long recognised that “for closer examination of scheduling 

rules, a different modelling technique would be required, which would allow consideration of 

discrete events, rather than an aggregate stream of activity flow” (Kelly 1970, p. 18). This 

other modelling technique can be found in the work of Lu who has specifically investigated 

resource constrained critical path project scheduling (Lu & Lam 2008; Lu & Li 2003) based 

on a simplified discrete event simulation approach (Lu 2003).  

 

Generative mechanisms are powerful tools for answering questions about why things happen 

the way they do, a type of question very relevant to practice. Rigour however, requires that 

we build such mechanisms from solid foundations. Discrete event simulation has a solid 

foundation for scheduling. System dynamics has a solid foundation for modelling both hard 

and soft factors as mechanisms which can include feedback loops. To utilise system 

dynamics in scheduling though we need a new stock & flow construction that is not based on 

an aggregation of tasks but nevertheless represents some commodity that is common to all the 

elements that make up a project schedule comprised of many separate and heterogeneous 

tasks. This stock & flow structure then needs to be embedded within a discrete event 

simulation-based scheduling engine making the combination a hybrid-simulation approach. 

Stocks and Flows 

Consider the view that project schedules represent time-based maps of transformations. Tasks 

scheduled at any moment in time are intended to be undergoing a transformation from a to-do 

state to a done state, with this transformation generating something that has utility for 

successor activities. 

 

 
Figure 1 Progress represented using a time bar 

 

 The transformation ongoing at any moment can also be represented as a flow, with to-do and 

done being stocks. The to-do value of an activity might be expressed in dollars, as is done in 

earned-value analysis, or as work-effort, typically person-days. 
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Figure 2 Progress represented using stock and flow 

 

The flow here represents the expected completion rate for the task, based on the assumption 

that one person-day of estimated work-effort takes one person, one day to complete. This 

assumption is based on the understanding that part of the project management process assigns 

resources to tasks, based on skills, and the adjusts planned durations to match the work 

completion rate of the assigned resource’s skill level. The matching of estimated work-effort, 

skill level, and duration has the effect of normalising the expected completion rate to unity. 

One person is expected to complete 3 person-days of effort at a rate of 1 per day over 3 days. 

This is a statement of the assigned person’s productivity. 

 

 
Figure 3 Productivity controls progress flow 

 

Productivity governs the rate of flow of work to-do into work done, and the planning process 

normalises the expected productivity to unity, by adjusting expected duration, based on work 

content and the skill level of the assigned resources. This principle is expressed in the concept 

of the full-time equivalent resource and is used to build project plans prior to the assignment 

of named individuals. A full-time equivalent resource has unit productivity and achieves a 

work rate of 1 person-day of effort per day. In this view, stocks represent work-effort 

measured in person-days. Flows represent work achievement rates, measured in fractions of a 

person-day per time-period, and productivity is a controlling variable with a nominal value of 

1.0.  

 
Figure 4 Stock and flow units 

 

This structure represents first order flow where work to-do is drained, or work done 

accumulates at a rate defined only by productivity’s effect on work-rate. An important 

consequence of first order flow is that if separate amounts of work-effort are added to the 

stock of work to-do, their individuality is lost as they flow through to work done. This 

constraint but can be accommodated by making a simplifying assumption common in 

scheduling that resources do not multi-task, they only ever have one active assignment and 

must complete this before they are available for another. The simple stock & flow structure 

above includes the basic elements necessary for using system dynamics to calculate the 

finish-time for a single resource’s allocated work-effort associated with a single task 

assignment. In the base case, where productivity is a constant 1.0 and work-rate represents 

that achieved by a full-time equivalent resource, this stock & flow structure should produce 

comparable plans to standard algebraic methods.  
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Discrete Event Scheduling 

The stock & flow structure above is only relevant to calculating work progress for individual 

resources once the activity has been started. The management of precedence relationships, 

resource allocation and the setting of activity start, and end times must still be accomplished. 

However, they must now occur within an environment capable of supporting the calculus 

underlying system dynamics so that progress can be represented by a flow of work-effort. 

 

The use of calculus-based system dynamics, albeit computer-based numerical calculus, 

means that this approach utilises continuous time modelling. This involves the assumption of 

a modelling constraint, that of the advancing present moment, created through the continuous 

accumulation of time-steps within the model as time is advanced. Calculations made at the 

moment described as ‘now’ in model time can only affect variables in existence at that instant 

and cannot have effects in the model’s ‘past’ or ‘future’. The advancing present moment 

means that scheduling must be based on heuristics, predefined rules for decision making that 

refer only to data available at the time the decision needs to be made.  

 

Lu’s Simplified Discrete-Event Simulation Approach (SDESA) demonstrates how heuristics 

based scheduling can be achieved using queue sorting within a discrete event simulation 

environment (Lu 2003).  Lu originally proposed SDESA as a scheduling approach for cyclic 

networks, where tasks are repeated until some gating condition is fulfilled but the approach is 

also applicable to acyclic networks. Several concepts used in SDESA have been carried 

forward in designing an implementation that includes the stock & flow structures described 

above.  

 
Figure 5 Overview of discrete event scheduling components 
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Two queues are used, one for resources (ResourceQueue) and another for schedule entities 

(ScheduleEntityQueue). To maintain the capability to support cyclic networks, a conceptual 

distinction is made between tasks and schedule entities. Task refers to the description of some 

package of work, which may or may not be performed more than once. Schedule entity refers 

to those instances where the task is planned to be performed, and therefore scheduled. In an 

acyclic network there will be a one-to-one relationship between tasks and schedule entities 

but in a cyclic network the same task may be repeated, creating multiple schedule entities. 

Schedule entities have states; Pending, Eligible, Active and Complete which are used in the 

same way as mutually exclusive sets in algebraic methods (Kolisch & Hartmann 1999).  

 

Resources can be either renewable or consumable. Renewable resources return to the 

ResourceQueue on completion of their assignment whereas consumable resources are 

destroyed. Renewable resources also have states; Idle and Working (with sub-states OnShift, 

OffShift and Finished) which are also used in the scheduling process. A special type of 

consumable resource is a token created by a predecessor schedule entity for each of its 

successor schedule entities. Passing these tokens between entities is how network precedence 

relationships are maintained. 

 

An executive process manages the allocation of resources to schedule entities and is initiated 

periodically to check whether an event has occurred which may allow a new entity to be 

scheduled. Such events occur whenever a new schedule entity or resource is added to or 

removed from either of their respective queues. As described below, schedule entities whose 

predecessors are all complete enter the Eligible state and on doing so add themselves to the 

ScheduleEntityQueue. Resources entering the Idle state add themselves to the 

ResourceQueue. Both events represent changes to the status quo and may present an 

opportunity to match a queued schedule entity to its required resources. The process is 

triggered by periodically checking an event flag rather than directly by events because the 

stock & flow structure controlling completion is not guaranteed to end at a discrete clock-

time but will include some small stochastic component generated by the numerical calculus 

software. A truly greedy algorithm would attempt to schedule immediately at each event, 

giving the early arrivals a temporal priority, in addition to their actual priority under the 

scheduling heuristic being implemented. It was discovered during early testing that making 

this process periodic rather than event triggered, improved scheduling outcomes. 

 

Both queues are maintained in a specific priority order. In this implementation the 

ResourceQueue is maintained in simple First-In-First-Out (FIFO) order, representing a time-

in-queue priority rule for resource utilisation. The order of the ScheduleEntityQueue 

however, is used to implement various scheduling heuristics by sorting the queued entities 

based on some parameter value.  Critical Path Method for instance would require schedule 

entities to have a parameter indicating float (slack) and sorting for ascending values of this 

parameter. After selecting the first queued entity in the sorted ScheduleEntityQueue the 

executive process then scans the ResourceQueue for the full complement of resources that 

this individual schedule entity requires. This implements a scheduling rule often described as 

‘meeting mode’ where activities require the availability of all resources rather than some 

lesser quorum number. If all necessary resources are in the queue, they are assigned to the 

schedule entity, removed from the ResourceQueue and the stock & flow structure for each 

individual resource is initiated. If the full complement of required resources is not available, 

the executive process moves on the next entity in the sorted ScheduleEntityQueue. 
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Schedule entities can be in one of four states. The initial state is Pending, indicating that the 

entity is not yet involved in the scheduling process. When all predecessors for a schedule 

entity are complete, indicated by the availability of a full set of predecessor tokens, the 

schedule entity enters the Eligible state. It is then added to the ScheduleEntityQueue and 

contends for resources. Schedule entities which have secured all their resources enter the 

Active state and wait for communication from their assigned resources before setting their 

begin-time. This ensures that the begin-time includes any constraints arising from resource 

calendars. Schedule entities remain in the Active state until their full complement of assigned 

resources signal that they have completed their allocated work-effort, which is controlled by 

their stock & flow structure and their calendar.  

 

Once all assigned resources have individually indicated completion, the schedule entity enters 

the Complete state and set its finish-time. It also performs some housekeeping activities on 

the ResourceQueue such as removing resources that have been consumed and adding tokens 

for its successors to communicate its own completion. 

 

 
Figure 6 Schedule Entity state diagram 

 

Resources have two main states, Idle and Working, dependent on whether they are currently 

assigned to a schedule entity or not. The Working state has three further sub-states; OffShift, 

OnShift and Finished. On entering the Working state, the value of work-effort that the 

resource is required to perform is added to the stock ToDo, but progress only takes place in 

the OnShift sub-state. OnShift represents calendar working time and gates the flow in the 

stock & flow structure simulating progress. OffShift represents calendar non-working time, 

night-time and weekends in a standard working week. Transitions between OnShift and 

OffShift are controlled by the calendar. On entering the OnShift state for the first time on a 

new assignment, resources signal their assigned schedule entity, allowing it to set it’s begin-

time. Progress on the resource’s assigned work-effort is then simulated by the interaction of 

the resource’s calendar effecting OffShift to OnShift state changes and productivity 

modulating the work-rate draining the ToDo stock into the Done stock.  
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Once enough progress has occurred to drain the ToDo stock to some defined threshold level 

(residual threshold) the resource transitions to the Finished sub-state and signals its assigned 

schedule entity that this individual resource has competed its assigned work-effort. The 

resource then enters the Idle state and is added back to the ResourceQueue, making it 

available for other queued schedule entities. The residual threshold is required because the 

numerical calculus underlying the stock & flow structure is iterative and will continue so long 

as the result can be represented numerically. In scheduling we are concerned with time on the 

human scale, down to hours and minutes, so stock levels representing amounts smaller than 

this can be considered residuals and ignored. Setting a value for the residual threshold allows 

this recursive process to exit when the required precision is achieved. 

 

 
Figure 7 Resource state diagram 

 

Since schedule entities in the Pending state are not queued, only the remaining states need to 

be considered as contending for resources. Further limiting this consideration to schedule 

entities only in the Eligible state, implements a simplification common in both the academic 

and practice communities, that of unary resource assignment. When applying this 

simplification, resources are assumed to have only one assignment at any time and multi-

tasking is not allowed, matching the first order flow constraint identified above.  

 

Thus, given an acyclic network and sorting the ScheduleEntityQueue for minimum float 

(slack), only considering schedule entities in the Eligible state as contending for the available 

resources, then removing those assigned resources from the ResourceQueue, will generate a 

CPM schedule that is a member of the set of time and resource feasible strict order solutions 

implementing unary and meeting mode resource assignment.  
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Benchmarking 

Simulation dictates a heuristics-based approach to resource constrained project scheduling 

and therefore cannot guarantee solution optimality. The scheduling capabilities of such an 

approach will vary, as do results from commercial project scheduling software packages, 

depending on the characteristics of the task network and the type and number of heuristics 

employed. To be able to assess the fitness of such an approach from a scheduling perspective, 

some standardised dataset, such as the Project Scheduling Problem Library (PSPLIB, TUM 

2019), is required. The PSPLIB contains precedence networks of tasks generated by an 

algorithm to exhibit certain desired characteristics and is used by the RCPSP research 

community to benchmark their different approaches to building scheduling algorithms.  

 

The task networks in the PSPLIB are designed to exhibit several useful characteristics. They 

are acyclic, so CPM values can be calculated. They are Activity-On-Node networks, rather 

than Precedence-Diagram-Networks, so relationships are restricted to finish-to-start and do 

not include lags. Durations and resources are described using natural numbers, so fractions of 

a resource need not be considered. Resource pre-emption is not allowed, meaning that 

resource assignments are unary. Resources can be consumable or renewable but are restricted 

to being of only four different types (Kolisch & Sprecher 1997). Datasets are available for 

both the single-mode and multi-mode resource assignment cases, where the latter considers 

alternative ways of getting a task done. The administrators of the PSPLIB also maintain a 

register of current best solutions, many of which are known to represent the optimal solution, 

i.e. the minimum possible makespan (overall duration) under the defined resource constraints. 

 

Trautmann and Baumann used the 30, 60 and 120 task single-mode PSPLIB datasets to 

benchmark the resource constrained makespan minimisation capabilities of seven 

commercially available project scheduling software packages using their default scheduling 

heuristic(s). They ranked them in various ways based on relative deviation from the current 

best solution (Trautmann & Baumann 2009). They later revisited the issue, testing eight 

packages against just the 120 task single-mode dataset but this time benchmarking each for 

relative deviation from the critical path lower bound, using various combinations of heuristics 

(Baumann & Trautmann 2016).  

Results 

An implementation of the simulation-based scheduling approach described above was created 

in the AnylogicTM modelling environment. It includes the capability to display results in Gantt 

chart form along with resource utilisation charts as these are the most common presentation 

styles of RCPSP instance data. CPM and other parameter data were calculated for all tasks in 

a network as the basis for simple numerical priority scheduling heuristics. These values were 

calculated once, prior to simulation, and were not updated as the simulation progressed. Eight 

simple numerical priority heuristics were tested. From CPM; minimum total float, minimum 

free float, early start and minimum late finish. Also included were minimum and maximum 

work content, a measure of how much effort a task represents and minimum and maximum 

duration, a measure of how short or long a task is. 

 

Tests were performed using the PSPLIB 30 task (n=480), 60 task (n=480) and 120 task 

(n=600) single-mode datasets (total n=1560). Each of the eight simple heuristics were used to 

construct a schedule for each of the test instances and the makespan recorded. This makespan 

was then compared to the best known solution published on the PSPLIB website for that 

instance (TUM 2019) and a difference calculated. This difference was then expressed as a 
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percentage variation from this best known figure, representing the quality of the schedule 

constructed by that heuristic, for that instance, from the perspectice of makespan 

minimisation.  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 % = (
𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑠𝑢𝑙𝑡 − 𝑃𝑆𝑃𝐿𝐼𝐵 𝐵𝑒𝑠𝑡

𝑃𝑆𝑃𝐿𝐼𝐵 𝐵𝑒𝑠𝑡
) × 100 

 

Simple statistical analyses were then performed on the 30, 60 and 120 task datasets of the 

Relative Makespan Deviation % to enable direct comparison with results published in 

Trautmann & Baumann (2009). Table 1 below summerises the comparison of arithmetic 

mean data. The upper half of the table shows data taken from the first 3 columns in Table 2 in 

Trautmann & Baumann (2009) comprising their results (T&B 2009 Results) for the default 

heuristic tests from seven scheduling tools including Microsoft ProjectTM (MSP) and 

PrimaveraTM P6 (PP6), full names and versions of these packages are published in Table 1 of 

their paper. The lower half of the table shows results from the simulation benchmarking tests 

(Simulation Model Results).  

 

Table 1 T&B Default Heuristic and Simulation Model Results, comparison of Mean 

Relative Makespan Deviation % 

 
 

The simple heuristic of minimum late finish has been highlighted in bold as this represents 

the best of the results from the simulation model. They also represent the lowest mean 

relative makespan deviation % in the datasets in this comparison.  

 

Table 2 below shows a table of the variance in each result set. The upper half of the table 

shows data taken from Table 3 in Trautmann & Baumann (2009) comprising their results for 

the variance of the relative makespan deviation % for their default heuristic tests. The lower 

half of the table shows the model results. Minimum late finish is again highlighted and 

represents the lowest variance of all the results in this comparison. 

PSPLIB Datasets 30 60 120

Tasks Tasks Tasks

Heuristic Mean Relative Makespan Deviation %

ACO default option 9.10 8.21 19.62

ATP default option 5.67 5.72 12.55

CSP default option 8.12 9.62 21.23

MSP default option 5.18 6.51 15.19

PP6 default option 9.45 10.53 24.14

PS8 default option 4.93 5.25 12.26

TPP default option 8.96 10.23 25.32

Min Total Float 6.57 7.21 16.91

Min Work Content 10.69 12.14 26.67

Max Work Content 8.96 10.92 23.56

Min Late Finish 4.05 5.24 10.31

Early Start 8.17 9.62 20.31

Min Duration 9.83 11.12 23.79

Min Free Float 6.88 8.15 18.98

Max Duration 9.79 11.29 24.98
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Table 2 T&B Default Heuristic and Simulation Model Results comparison of Variance 

of Relative Makespan Deviation % 

 
 

Table 3 below shows a similar comparison for Trautmann & Baumann’s (2009) data for the 

mean relative makespan deviation % for the best single heuristic available in each of the 

seven packages they tested. Some of the commercial packages show the same result as in 

Table 1 as they have only one proprietary scheduling heuristic. The simulation model results 

for minimum late finish are again highlighted however, this time some of the commercial 

packages have better results with PP6 being consistently better across all three test datasets. 

 

Table 3 T&B Best Heuristic and Simulation Model Results comparison of Mean 

Relative Makespan Deviation % 

 

PSPLIB Datasets 30 60 120

Tasks Tasks Tasks

Heuristic Mean Relative Makespan Deviation %

ACO best option 3.66 4.64 11.78

ATP best option 5.67 5.72 12.55

CSP best option 3.31 5.46 14.68

MSP best option 5.18 6.51 15.19

PP6 best option 2.38 3.75 9.89

PS8 best option 4.93 5.25 12.26

TPP best option 8.61 9.92 24.42

Min Total Float 6.57 7.21 16.91

Min Work Content 10.69 12.14 26.67

Max Work Content 8.96 10.92 23.56

Min Late Finish 4.05 5.24 10.31

Early Start 8.17 9.62 20.31

Min Duration 9.83 11.12 23.79

Min Free Float 6.88 8.15 18.98

Max Duration 9.79 11.29 24.98
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Conclusions 

This paper has taken the view that the gap between scheduling research and practice arises 

from the same ontological and epistemological issues that have been identified in the rigour-

relevance debate within the broader management science community and that the solutions 

proposed there will be effective in project management too. This will entail taking a systems-

based view of what generates the kind of behaviour observed on real projects and building 

generative mechanisms for this behaviour that can be included in schedule construction.  

 

There are many ways in which such generative mechanisms might be included in the process 

of schedule construction. This paper has described one approach using discrete event 

modelling for scheduling and system dynamics for task progress. Abstracting task progress in 

this way and modelling it using system dynamics will hopefully enable the wealth of research 

that already exists incorporating the concept to be leveraged for the purposes of schedule 

construction. 

 

Before that can happen though the approach must first prove its capabilities in building 

standard schedules, where task progress is nominal and constant. The data presented above 

shows that when compared with single heuristic scheduling in commercial packages the 

results can be good, dependent on the heuristic used. The commercial packages are of course 

quicker in calculating a result, the model requiring approximately one second per task to 

generate a schedule on the test PC (i7-6700, 3.40GHz, 4 Cores). Further tests of multiple 

nested heuristics are ongoing and can be compared in the same way with the existing 

published benchmark tests (Baumann & Trautmann 2016). 

 

The model and benchmarking tests above represent an important proof of principle with 

several benefits evident in the implementation tested. The scheduling and generative 

mechanism components in the model are separate, mapping to those parts based on discrete 

event simulation and system dynamics respectively. Scheduling is implemented using 

standard AnylogicTM graphical components from the discrete event simulation palette plus 

additional code written in Java. Similarly, task progress is implemented using simple 

graphical components from the system dynamics palette. Deep knowledge of system 

dynamics is not required to conduct research into heuristics or meta-heuristics and deep 

knowledge of scheduling is not required to build generative mechanisms that modify resource 

productivity. The model provides a bridge between these two disciplines. 

 

Closing the rigour-relevance gap will require researchers to accept some level of 

commonality in the three components of methods, tools and model presentation. The reuse of 

common components would serve to concentrate effort and allow the accumulation of 

comparable data on interesting phenomena from multiple sources, an approach likely to carry 

significant weight with practitioners. The ready availability of these components would allow 

interesting results to be replicated in their original context, or reproduced in new contexts, 

further supporting this accumulation of evidence. Component reuse would also ease the 

burden placed on researchers of acquiring new knowledge and skills as they attempt to push 

the boundaries of what is becoming an increasingly interdisciplinary area of research 

requiring good laboratory practice. 
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