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ABSTRACT  

Communications are the most important part of our daily life. The ionosphere play an 

important role in communications due to the conditions of the ionosphere can affect 

severely the transmitting and receiving information. Therefore, we propose an intelligent 

system that can predict accurately structures in the ionosphere. We use a morphological 

associative model. The obtained results of effectiveness from the Leave One out, Hold 

Out and Ten-Fold Cross validation test were: 89.45%, 97.77% and 95.83%, respectively, 

when we use only the max memory because min memory showed a bad performance.  

Keywords: Artificial Intelligence, Associative Memories, Pattern Recognition, 

Prediction, Ionosphere 

INTRODUCTION 

Actual globalization and the importance of terrestrial and satellite communications make 

important any element that affects these types of communications. One of these elements 

is the condition of the ionosphere, therefore it is constantly monitored. However, current 

methods require many infrastructure or a high budget due to the constant maintenance. 

In this work, we propose a useful tool to identify whether there are structures in the 

ionosphere in a specific moment in order to predict if a signal can be affected. For 

example, there is a current error in positioning lecture from a GPS that is about 10 or 20 

meters depending on the features of the ionosphere at that time. An accurate prediction 

could allow us to have a better idea of the situation in a specific time. 

We propose to use an associative model that is the Morphological Associative Memory 

which is based on the basic operations of the mathematical morphology: erosion and 

dilatation. 
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Basic concepts of Ionosphere 

The ionosphere (Hunsucker and Hargreave, 2003) is the ionized component of the 

atmosphere, comprising free electrons and positive ions, generally in equal numbers, in a 

medium that is electrically neutral. Though the charged particles are only a minority 

amongst the neutral ones, they nevertheless exert a great influence in electrical properties 

of the medium, and it is their presence that brings about the possibility of radio 

communication over large distances by making use of one or more ionospheric 

reflections.  

Looked at most simply, the ionosphere acts as a mirror situated between 100 to 400 Km 

above the Earth’s surface, as in Figure 1, which allows reflected signals to reach points 

around the bulge of the Earth. The details of how reflection occurs depends on the radio 

frequency of the signal, but most usual mechanism, which applies in the high frequency 

(HF) band (3-30 MHz), is actually a gradual bending of the ray towards the horizontal as 

the refracting index of the ionospheric medium decreases with altitude. Under good 

conditions, signals can be propagated in this way for several thousand kilometres by 

mean of repeated reflections between ionosphere and ground.  

 

Figure 1. Long distance propagation by multiple hops between the ionosphere and 

the ground. 

Typical vertical profiles of the ionosphere are showed in Figure 2. The identification of 

the regions was much influenced by their signatures on ionograms, which tend to 

emphasize inflections in the profile, and it is not necessarily the case that distinct minima 

separate the various layers.  
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Figure 2. Typical vertical profiles of electron density in the mid-altitude ionosphere: 

sunspot maximum (continuous line) and minimum (dashed line).  

The main regions are designated D, E, F1, and F2, with the following daytime 

characteristics: 

• D region, 60-90 Km: electron density 108-1010 m-3 (102-104 cm-3); 

• E region, 105-160 Km: electron density of several times 1011 m-3 (105 cm-3); 

• F1 region, 160-180 Km: electron density of several times 1011 to about 1012 m-3 (105 – 

106 cm-3); 

• F2 region, height of maximum variable around 300 Km: electron density up to several 

times 1012 m-3 (106 cm-3); 

All these ionospheric regions are highly variable, and in particular there is generally a 

large change between day and night. The D and F1 regions vanish at night, and E region 

becomes much weaker. The F2 region, however, tends to persist though at reduced 

intensity.  

During the day, the intensity of ionizing radiation varies with the elevations of the Sun. 

At night, the source of radiation is remove and so the electron density decays. 

Related work 

A hybrid classifier (Raymer et al, 2003) combine with an evolutionary algorithm was 

applied to classify some datasets, among them it is the Ionosphere dataset from the UCI 

machine learning data set repository (https://archive.ics.uci.edu/ml/datasets/Ionosphere) . 

This data was also used in this work. The algorithm performs feature selection and 

extraction to isolate the salient features from large data sets. They report the 87.5% of 

effectiveness when they use 8 features. 

https://archive.ics.uci.edu/ml/datasets/Ionosphere
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Kim and Park (Kim and Park, 2004) proposed a kernelized ionic interaction (IoI) model 

for data reduction in support vector machines. The instance-based algorithm (IB2) was 

already applied to select points in the input space. Here, it is further developed it into a 

kernelized-IB2 (KIB2), where IB2 is applied in the high dimensional feature space based 

on the kernel. The third is a hybrid KIB2-IoI method where IoI is used as a 

complementary method to select data points in addition to the data points selected by 

KIB2. The results show that with the full data set they obtained 95.20%, with IoI the 

effectiveness was o 94.31%, the 92.26% was the result of applying KIB2 and with KIB2-

IoI the effectiveness was of 94.59%. The authors used de 10-Fold Cross validation for 

testing the performance of their proposal.  

 

The need for finding the number of clusters in conjunction with feature selection, and the 

need for normalizing the bias of feature selection criteria with respect to dimension was 

accomplish by the means of FSSEM (Feature Subset Selection using Expectation-

Maximization (EM) clustering) and through two different performance criteria for 

evaluating candidate feature subsets: scatter separability and maximum likelihood (Dy 

and  Brodley, 2004). They obtained the 83.8% of effectiveness with the 10-Fold cross 

validation test algorithm. 

 

Genetic Programming (Eggermont, Kok and Kosters, 2004) is used to evolve decision 

trees for data classification, search spaces tend to become extremely large. In this work, 

authors use different variables to classify the Ionosphere data set. The best result they 

obtained was the 93.5% of effectiveness with the 10-Fold cross validation test algorithm. 

 

Chung-Jui et al. (Chung-Jui et al., 2007) proposed the Particle Swarm Optimization 

(PSO) for feature selection and SVM as a fitness function to classify some data sets from 

UCI database, among them is the Ionosphere set. They used the Hold Out method to 

measure the performance of their algorithm. They reported the 97.33% of effectiveness 

with only 15 features from the 34 original features.   

 

Clustering Algorithm from the Radial Basis Function (RBF) network architecture was 

incorporated it into the conventional Hybrid Multilayer Perceptron HMLP network 

architecture to improve the performance (Mat and Fahmi, 2011). One of the dataset used 

in this work was the Ionosphere. They applied the Hold-Out method with the 80/20 

training/test and they obtained the 96.14% of effectiveness. 

 

The authors proposed a sequential learning algorithm for a neural network classifier 

based on human meta-cognitive learning principles (Sateesh and Suresh, 2012). The 

network, referred to as Meta-cognitive Neural Network (McNN). McNN has two 

components, namely the cognitive component and the meta-cognitive component. 

Friedman test followed by the Benferroni–Dunn test is used to establish the statistical 

significance of McNN classifier. The authors used 100 samples for training and 251 for 

testing, and the best result they obtained was 95.62%. 

 

 

Recently, a data-based prediction method, Random Bits Regression (RBR) was proposed 

(Wang et al., 2016). The method first generates a large number of random binary 
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intermediate/derived features based on the original input matrix, and then performs 

regularized linear/logistic regression on those intermediate/derived features to predict the 

outcome. The authors used the 10-Fold cross validation test and they obtained the 94.58% 

of effectiveness. 

METHODS AND MATERIALS 

In this section, we present the basic concepts of an Associative Memory and the training 

and recalling phases of the Morphological Associative Memories. Finally, we describe 

the algorithm of the proposed system. 

Associative Memories 

An Associative Memory (AM) is a system that works as human memory: it associates 

patterns to recall them later. For example, we associate faces with names and when we 

meet a friend we can call him by his name because we recognize the face. We can say 

that we are eating a guava due to the smell and the taste because we associate that smell 

and taste from the first time we had a guava. Also, a doctor can diagnose a knee fracture 

with just to observe an X-ray because he has associated the pattern of a fracture with that 

event. We can predict the rain when we see a cloudy sky. Therefore, when we have 

associated stimuli with responses we can recall the response if the stimulus is presented. 

That is what an associative memory does. In the learning phase, it associates input 

patterns (stimuli) with output patterns (responses) and then, in the recalling phase, it 

recalls the corresponding response when a specific stimulus is presented. 

The input and output patterns for an AM can be images, strings, or numbers (real, integer 

or binary), they can be any kind of patterns that can be represented with a number. These 

patterns are stored in vectors. The task of association of these vectors is called Training 

Phase and the Recognizing Phase allows recovering patterns. The stimuli are the input 

patterns represented by the set x = {x1, x2, x3, …, xp} where p is the number of associated 

patterns. The responses are the output patterns and are represented by y = {y1, y2, y3, …, 

yp}. Representation of vectors xµ is where n is the cardinality of xµ. The 

cardinality of vectors yµ is m, then . The set of associations of input and 

output patterns is called the fundamental set or training set and is represented as follows:  

{(x, y) |  = 1, 2, ..., p}. 

Morphological Associative Memories 

The basic computations occurring in the proposed morphological network (Ritter, 

Sussner and Diaz de León, 1998) are based on the algebraic lattice structure (R, , , +), 

where the symbols  and  denote the binary operations of maximum and minimum, 

respectively. Using the lattice structure (R, , , +), for an m x n matrix A and a p x n 

matrix B with entries from R, the matrix product C = A  B, also called the max product 

of A and B, is defined by equation (1). 

 

 (1) 
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The min product of A and B induced by the lattice structure is defined in a similar 

fashion. Specifically, the i,jth entry of C = A  B is given by equation (2). 

 

 (2) 

 

Henceforth, let (x1, y1), (x2, y2), …, (xp, yp) be p vector pairs with ( )tk

n

kkk xxxx ,...,,
21

=   Rn 

and  ( )tk

m

kkk yyyy ,...,,
21

=  Rm for k = 1, 2, …, p. For a given set of pattern associations {(xk, 

yk) | k= 1, 2, …, p} we define a pair of associated pattern matrices (X, Y), where X=(x1, 

x2, …, xp) and Y=(y1, y2, …, yp). Thus, X is of dimension n x p with i,jth entry and Y is 

of dimension m x p with i,jth entry . Since yk  (-xk)t = yk  (-xk)t, the notational burden 

is reduced by denoting these identical morphological outer vector products by yk  (-xk)t.  

With these definitions, we present the algorithms for the training and recalling phase. 

 

Training Phase 

 

1. For each p association (x, y), the minimum product is used to build the matrix y  

(-x)t of dimensions m x n, where the input transposed negative pattern x is defined 

as . 

2. The maximum and minimum operators ( and ) are applied to the p matrices to 

obtain M and W memories as equations (3) and (4) show. 

 

 (3) 

 

 (4) 

Recalling phase 

 

In this phase, the minimum and maximum product,   and , are applied between 

memories M or W and input pattern x, where   {1, 2, ..., p}, to obtain the column 

vector y of dimension m as equations (5) and (6) shows: 

y = M  x (5) 

y = W  x (6) 

Ritter, G. X., Sussner, P. and Diaz de León, J. L. (1998). Morphological Associative Memories. IEEE 

Transactions on Neural Networks 9(2): 281-293. 

Description of the System 

Dataset 

The radar data were collected by the Space Physics Group of The Johns Hopkins 

University Applied Physics Laboratory. The radar system, located in Goose Bay, 
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Labrador, consists of a phased array of 16 high-frequency antennas, with a total 

transmitted power about 6.4 kW and an antenna gain of about 30 dBm at frequency 

ranges of 8 to 20 MHz. The radar returns are used to study the physics of the ionosphere 

at the E- and F-layers (100- to 500-km altitude). The targets, free electrons in the 

ionosphere, have small cross sections about 10- 30 m2. A typical number density of 

electrons would be about 108/m3, and the total volume could be as large as 106 m3.  

In general, good returns are indicated by well defined signals, which are evidence of the 

presence of some type of structure in the ionosphere. Bad returns can be caused by the 

absence of identifiable structure (the signal passes through the ionosphere); by incoherent 

scattering (signals are reflected from too many structures, resulting in phase 

cancellation); by the absorption of radar pulses; and by interference from other 

transmitters. Bad returns are more diverse than good ones.  

Received signals were processed using an autocorrelation function whose arguments are 

the time of a pulse and the pulse number. There were 17 pulse numbers for the Goose 

Bay system. In this dataset, instances are described by two attributes per pulse number, 

corresponding to the complex values returned by the function resulting from the complex 

electromagnetic signal. Therefore, there are 34 continuous attributes and additional 

attribute is used for the good or bad returns classification. 

There are 351 instances from which, 225 are classified as good returns and 126 instances 

are bad returns. This dataset is unbalanced. 

Prediction system 

The input patterns for the Morphological Associative Memory (MAM) will be the 

instances from dataset. Then, each vector will be of dimension of 34. The dimension of 

the output patterns will depend on the number of instances that will be used to train the 

memory, for example, if we train the MAM with 100 instances, then the dimension of the 

output patterns will be of 100. The values of the elements of the output vectors will 

depend on the type of the memory, i.e., if we train a max memory then just one of the 

elements will be 500 and the remain will be 0. If we are training a min MAM, one of the 

elements will have the value of -500 and the remain will have the value of 0. We 

illustrate the training and recalling phases with the following example. We have the input 

patterns, 

,  ,   

For max MAM, the output patterns are, 

,  ,   

And for the min Morphological Associative Memory, 
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,  ,   

Now we apply equation (3) to build max memory. 

 

 

 

 

 

 

 

Then we apply equation (4) to build min memory 
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Finally, we recall pattern y1 by presenting input pattern x1 and applying equations (5) and 

(6). 

 

 

After this, we set the values different of 500 to 0, then we obtain the corresponding 

output pattern y1. 

   →    

Now we present the pattern x1 to the min MAM. 

 

 

 
In a similar way, we set to 0 all the values in the result vector that are different to -500, 

then we obtain the corresponding pattern 1y . 

  →    

 
In both cases, min and max memories recalled the corresponding output patterns.  

In the following section we present the results from the tests we accomplished.  
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EXPERIMENTS AND RESULTS 

We implement the software in a laptop with an Intel CORE i5 processor and with 

language programming Visual Studio 2013 C#. 

We used three algorithms to test our proposal: Leave-One-Out, Hold-Out and K-Fold 

Cross Validation.  

In the first case, we took the first record out for testing and we trained the MAM with the 

350 records remain. Then, we took the second record out for testing and we use the other 

350 for training. We did 351 tests, the average is presented in Table I. We can observe 

that the good class had a better recall than bad class with both memories. The total recall 

was of 89.45% with max memory and 78.63% with min memory. 

Table I. Results from the Leave-One-Out test. 

 

 

 

For the Hold-Out test, we used the 10% of the records for training and the 90% for 

testing. Then, we took the 20% of the records for training and the 80% for testing, and so 

on. The selection of the records is done randomly. The results are presented in Table II. 

In general, we can observe from Table II that we had better recall in good class and that 

the max memory presented the best recall in both classes. The result from the 80/20 

(training/test) is 97.77% of recalling. 

In the final test, we chose K = 10, this means that we built ten blocks of 35 records (we 

did not include one record from the good class due to is the class with more records), the 

blocks were built in a random way. After, we used the first block for testing and the 

remaining nine blocks were used to train the MAM. Then, we used the second block for 

testing and the remaining records for training and so on. The results can be observed in 

Table III. In the first column, we can see the number of the block that was used to test the 

memory. 

Table II. Results from the Hold-Out test. 

Training 

(%) 

Good Class Bad Class 

Max recall Min recall Max recall Min recall 

10 173/202 85.64% 183/202 90.59% 108/114 94.73% 66/114 57.89% 

20 151/180 83.88% 157/180 87.22% 83/101 82.17% 72/101 71.28% 

30 148/157 94.42% 149/157 94.90% 72/88 81.81% 48/88 54.54% 

40 129/135 95.55% 131/135 97.03% 62/76 81.57% 38/76 50% 

Class Rec. Max Max Rec. Min Min 

Good 221/225 98.22% 218/225 96.88% 

Bad 93/126 73.80% 58/126 46.03% 

Total 314/351 89.45% 276/351 78.63% 
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50 107/112 95.53% 109/112 97.32% 52/63 82.53% 32/63 50.79% 

60 87/90 96.66% 87/90 96.66% 41/50 82% 26/50 52% 

70 64/67 95.52% 64/67 95.52% 34/38 89.47% 20/38 52.63% 

80 44/45 97.77% 44/45 97.77% 23/25 92% 13/25 52% 

90 22/22 100% 22/22 100% 11/13 84.61% 5/13 38.46% 

Table III. Results from the 10-Fold Cross Validation. 

Block 
Good Class Bad Class 

Max recall Min recall Max recall Min recall 

1 23/23 100% 23/23 100% 8/12 66.66% 6/12 50% 

2 23/23 100% 23/23 100% 11/12 91.66% 8/12 66.66% 

3 22/23 95.65% 22/23 95.65% 10/12 83.33% 9/12 75% 

4 23/23 100% 22/23 95.65% 5/12 41.66% 5/12 41.66% 

5 22/23 95.65% 22/23 95.65% 7/12 58.33% 3/12 25% 

6 22/23 95.65% 23/23 100% 7/12 58.33% 4/12 33.33% 

7 23/23 100% 23/23 100% 4/12 33.33% 4/12 33.33% 

8 22/23 95.65% 22/23 95.65% 10/12 83.33% 5/12 41.66% 

9 23/23 100% 22/23 95.65% 11/12 91.66% 8/12 66.66% 

10 18/18 100% 18/18 100% 12/17 70.58% 9/17 52.94% 

Average 98.26% 97.82% 67.88% 48.62% 

 

From Table III, we can observe that in this case, the best results are found in good class 

and they are obtained with both memories. The average shows a 98.26% of effectiveness 

with only one mistake in the good class, the best result was of 100% of recalling. In the 

case of the bad class, the average with max memory was of 67.88% of recalling and the 

best result was of 91.66%. The Table III showed that the worst performance for bad class 

was obtained with the min memory.  

In Table IV we show the comparisons with the other approaches mentioned in the sub 

section of Related work.  

From Table IV, we can observe that when we used the Hold Out method test (80/20) we 

obtained the 97.77% of effectivity while the PSO-SVM (15 features) and the Clustered-

Hybrid Multilayer Perceptron obtained 97.33% and 96.14%, respectively. In the case of 

the 10-Fold cross validation test, the average of our best results is 95.83% of 

effectiveness, almost the same result from McNN. 

Table IV. Comparisons with the results from different approaches. 

Year Algorithm Method test Efectiveness (%) 

2003 Hybrid classifier ---- 87.5 

2004 

Full set 

IoI  

KIB2 

KIB2-IoI  

Ten-Fold cross validation 

95.20 

94.31 

92.26 

94.59 

2004 FSSEM Ten-Fold cross validation 83.8 
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2004 Genetic programming Ten-Fold cross validation 93.5 

2007 PSO-SVM (15 features) Hold-Out (80/20) 97.33 

2011 
Clustered-Hybrid Multilayer 

Perceptron 
Hold-Out (80/20) 

96.14 

2012 McNN  
Friedman and Benferroni–Dunn 

tests  
95.62 

2016 Random Bits Regression Ten-Fold cross validation 94.58 

2016 Our proposal 
Leave One Out 

Hold Out (80/20) 

Ten-Fold cross validation 

89.45 

97.77 

95.83 

CONCLUSIONS 

Morphological associative memories (MAM) are suitable tools to predict structures in the 

ionosphere. Our results are competitive with other approaches and our algorithm is less 

complex than others as we can see with the illustrative example. We showed that we can 

predict structures in the ionosphere with an accuracy of 97.77%. 

We observed that, in this case, min MAM had a poor performance. 

In the three cases of the test methods, the worst results are for the bad class. The reason is 

because the dataset is unbalanced, i.e., the good class has more records than the bad class, 

almost the double of the records. 
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