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ABSTRACT 
 

As with all chronic diseases, it is now recognized that type 2 diabetes is a complex health 
issue, the etiology of which involves numerous risk factors operating at different 
ecological levels of analysis. However, this ecological complexity of the problem seldom 
manifests itself in the interventions for preventing the problem, which typically focus on 
changing behavior through universal health education, with the assumption of a 
homogeneous population. This paper examines the limitations of this way of framing 
the problem of type 2 diabetes, particularly its failure to capture the way in which this 
problem emerges because of dynamic interactions between individuals and their 
environments and how these interactions vary in fundamental ways depending upon the 
context within which they occur. Specifically, the paper examines how framing of type 2 
diabetes in the Lower Rio Grande Valley (LRGV) affects which systems modeling 
method selects to understand the problem and to help guide policy-makers to 
ameliorate it. Each systems model has a paradigm characterizing it by a set of 
fundamental rules and underlying concepts. That is, each method bases on assumptions 
of how the model should be constructed and the knowledge obtainable from such 
assumptions. By assuming the model should be constructed in a certain way, the 
modeler (whether implicitly or explicitly) frames the problem by making assumptions 
about the phenomenon-of-interest. Choosing to develop any model asserts that the 
model proscribes to paradigmatic assumptions for how it would contribute something of 
value) in some capacity (for a purpose), which is ultimately affected by understanding, 
interpretation, and application of the problem. The paper describes how specific types of 
systems methods, those using agent-based models (ABMs) and system dynamics models 
(SDMs), can produce very different ways of understanding the problem of, and the 
leverage points for, type 2 diabetes in the LRGV. Additionally, it moves beyond simply 
outlining the general differences in the use and applications of ABM and SDM, to 
presenting models demonstrating how framing of the problem and model paradigmatic 
assumptions affect understanding of the problem of type 2 diabetes in the LGRV and its 
potential leverage points. While the examples are specific to a health problem in a 
specific community, the significance of such an approach is in its generalizability to how 
understanding social system behavior depends upon how framing the problem and the 
paradigmatic assumptions of the modeling method affect our understanding of social 
systems and public health problems. 
 
Keywords: complexity, public health, chronic disease, system dynamics, agent-based 
models 
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“So much of our well-intentioned hard work in public health appears to yield 

disappointing results” 
(McKinley and Marceau, 1999) 

 
TYPE 2 DIABETES IS A COMPLEX HEALTH ISSUE 

 
As with all chronic diseases, it is now recognized that type 2 diabetes  is a complex 
health issue, the etiology of which involves numerous risk factors operating at different 
ecological levels of analysis (e.g., individual, interpersonal, organizational, community, 
and policy) (Hill et al., 2013). Unhealthy diet, sedentary lifestyle, stress and obesity are 
among the key risk factors for type 2 diabetes, and these too are the result of 
interactions between complex processes operating at different levels of analysis (Kaldor 
et al., 2015; Kelly and Ismail, 2015; Schulze and Hu, 2005). However, this recognition of 
the ecological complexity of type 2 diabetes seldom manifests itself in the interventions 
that emerge for preventing the problem. These interventions tend to frame the problem 
as one of individual responsibility and typically try to change the behavior and lifestyle 
of individuals through universal health education and information programs designed 
to improve diet and exercise (Kaldor et al., 2015). Such interventions have, at best, small 
to moderate effects on diet, physical activity and weight (Bhattarai et al., 2013; 
Gottmaker et al., 2011; Orrow et al., 2012). 
 
Behavioral interventions infrequently address the constellation of risk factors for 
diabetes that vary across population subgroups and geographic locations. For example, 
the influence of occupational stress and childhood socioeconomic status appears to 
interact with gender and mental health (Kelly and Ismail, 2015). Given such complexity, 
a universal intervention targeted at males and females and individuals from diverse 
socioeconomic circumstances is unlikely to have the desired effect. A second implication 
of the complexity of the problem is that risk factors for type 2 diabetes that operate at 
different levels interact with one another (Galea et al., 2009; Roberto et al., 2015). 
Therefore,  intervening at one level (e.g., educating people about healthy food choices) 
may be pointless if the food and social environments have already shaped individuals’ 
preferences for cheap, processed, energy-dense foods and if the food environment 
provides few available options for an affordable healthy diet (Gortmaker et al., 2011). 
This paper examines the limitations of this way of framing the problem of type 2 
diabetes, particularly its failure to capture the way in which this problem emerges from 
dynamic interactions between individuals and their environments and how these 
interactions vary in fundamental ways depending upon the context within which they 
occur. Specifically, the paper examines how framing of type 2 diabetes in the Lower Rio 
Grande Valley (LRGV) affects which systems modeling method selects to understand the 
problem and to help guide policy-makers to ameliorate it. 
 
Etiology and Risk Factors 
 
According to the Texas Health Institute (2010), diabetes is a statewide epidemic. 
Diabetes was the third leading cause of death nationally, sixth leading cause of death in 
the State of Texas, and the third leading cause of death in some localities. Prevalence 
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rates are especially high among those with low incomes, African Americans, Hispanics 
and those over 65 years of age (Office of Surveillance, Evaluation, and Research, 2013, 
Figure 5). In terms of geographic location, prevalence rates are highest (between 12.5% 
and 15.3%) in the eastern and southern parts of the state (Office of Surveillance, 
Evaluation, and Research, 2013, Figure 4). These data are even more troubling when 
considering that experts believe there exists considerable underreporting of the disease 
as a cause of death due to inconsistencies in reporting on death certificates. Estimates 
by the Texas Diabetes Council for 2008 suggested that 1.7 million (or one in 12 Texas 
adults) have been diagnosed with diabetes, 425,000 Texas adults with the disease went 
undiagnosed, and over one million Texas adults were prediabetic and at high risk for 
developing the disease within the next decade (Texas Health Institute, 2010). 
 
Population Subgroups 
 
There exist marked socioeconomic, gender and race/ethnic disparities in type 2 diabetes 
prevalence meaning that some populations are at greater risk than are others (Figure 1). 
Two recent reports from the Missouri Department of Health and Senior Services 
(MDHSS; 2014a; 2014b) summarized the population characteristics that increase risk of 
type 2 diabetes, and the broad strategies best suited to address risks factors within these 
population subgroups, into the following groups: racial and ethnic minorities, children 
and adolescents, older adults, low-income, rural/urban, and women. Racial and ethnic 
minority population risk factors included access to health care and other resources for 
diabetes, language, literacy, cultural norms and beliefs in relation to health behaviors, 
cultural attitudes in relation to body image, and stress, and susceptibility. Strategies to 
address racial/ethnic minority population considerations included improving access to 
health care and other resources for diabetes, addressing barriers related to language, 
tailoring to culture, providing cultural competency training, developing self-
management skills, involving priority populations, engaging stakeholders, addressing 
participant needs, using established settings, and screening programs (MDHSS, 2014a). 
 
Children and adolescent population considerations included developmental changes, 
lower compliance rates, desire for independence/autonomy, peer influence, the role of 
family support, influence of schools on diabetes self-management, increased diagnosis 
of diabetes, and possible increased risk and rate of complications associated with 
diabetes. Strategies to address the children and adolescents included tailoring to age 
groups, empowering children and adolescents, capitalizing on desire for independence, 
addressing peer pressure, addressing social norms, and family support systems 
(MDHSS, 2014a).  
 
Older adult population considerations included a disproportionate disease burden, lack 
of access to affordable care, food preference and an inactive lifestyle, lack of education, 
and the aging process. Strategies to address older adult population considerations 
included addressing chronic diseases and medications, improving access to affordable 
care, providing opportunities to learn about and practice self-management, and building 
and maintaining social support (MDHSS, 2014a). 
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Low-income population considerations included access to health care, health care 
coverage, cost of a healthy lifestyle, cost of diabetes management, and stress. Strategies 
to address low-income population considerations included improving access to health 
care, creating opportunities for more affordable prevention and health care, and 
addressing participant needs (MDHSS, 2014a). 
 
 

 
 

Figure 1. Populations at High-Risk for Diabetes 
 
 
Rural/urban population considerations included access to health care, perception of 
health, provider availability, and environmental constraints. Strategies to address 
rural/urban population considerations included improving access to health care, 
promoting self-management, restructuring the environment, and transportation 
(MDHSS, 2014a). It should be noted that while there are many risk factors common to 
urban and rural population (e.g., low socioeconomic status), there are others that are 
more pronounced in one setting than another (e.g., rural neighborhoods may have no 
public transportation system, while urban neighborhoods may have unsafe public 
transportation systems) (Hill et al., 2013). 
 
Population considerations for women included a history of gestational diabetes, family 
commitments, and racial disparities. Strategies to address female population 
considerations included prenatal care and social support strategies (MDHSS, 2014a). 
 
Framing the Problem 
 
The way in which a problem is framed affects which systems modeling method one uses 
to understand the problem and to help guide policy-makers to ameliorate it.  In public 
health research, socioecological models have been used to better understand the 
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etiology of a wide variety of public health problems and to guide public health 
interventions (Richard et al., 2011), including those pertaining to policies and 
environmental strategies focused on the physical activity and food environments (Sallis 
et al., 2006; Story et al., 2008). These models move away from the traditional 
understanding of health behavior in terms of individual knowledge, attitudes and 
behavior to an emphasis on the social, economic, normative, and environmental factors 
that shape and maintain unhealthy behaviors (Hill et al., 2013). In traditional 
prevention models, health problems are typically framed in terms of individual lifestyle, 
choice and personal responsibility. The socioecological approach makes it clear that 
lifestyle and personal responsibility develop within different environmental contexts, 
and that some of these are more conducive to a healthy lifestyle and eating responsibly 
than others. It also makes it clear that one’s choice as to what to eat and whether to 
exercise is largely determined by what is available in one’s immediate environment and 
one’s socioeconomic position. In short, individuals are born into and develop within 
food and activity environments that are shaped by the private sector, public policy and 
local, national and international economic forces (e.g., temporal changes in the sugar 
and fat content of the US food supply, food and beverage marketing, urbanization, 
changes in community transportation infrastructure, and developments in 
communication such as cell phones and the Internet). These are factors beyond the 
control of individuals, but factors fundamentally affecting individual norms, 
preferences, desires, habits and perceptions (Gortmaker et al., 2011; Hill et al., 2013). 
This is a fundamentally different way to frame the problem than the dominant approach 
that sees type 2 diabetes as mainly a problem that can be rectified by changing 
individuals through educational initiatives. 
 
Given the intractability of diabetes to individual-level behavioral modification 
interventions, interest in the use of socioecological models has grown in type 2 diabetes 
research in recent years. A prime example of this is the recent report of the American 
Diabetes Association Prevention Committee (Hill et al., 2013) which examined in detail 
the socio-ecological determinants of the disease using a model of levels and sectors of 
influence initially developed by the Institute of Medicine (2012) to explain childhood 
obesity. The model moves beyond identification of individual and behavioral risk factors 
to a focus on the various environmental settings that influence energy intake and energy 
expenditure, which in turn affect the one of the down-stream risk factor for type 2 
diabetes which is body weight. The environments are comprised of the school 
environments, the healthcare and work environments, the physical activity 
environments, and the food and beverage environments. Hill et al. (2013) describe in 
detail the myriad of risk factors within each of these settings, with an emphasis on how 
social and environmental factors (such as living in an unsafe neighborhood, poor access 
to recreational facilities, green spaces and a healthy food supply, and greater 
accessibility of fast food) lead to changes in population-level food consumption and 
physical activity and greater risk of type 2 diabetes. They also draw attention to the fact 
that the risk factors within any one of these settings in a particular geographic location 
(e.g., an urban setting) may look different to those that operate to increase risk of type 2 
diabetes in another geographic location (e.g., a rural setting). 
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Epidemiologists have developed a number of heuristic models to help understand the 
etiology of complex chronic health problems such as type 2 diabetes that involve the 
interaction between risk factors operating at different levels of analysis and interacting 
dynamically over time. One such heuristic model is the web of causation, which enables 
one to think about the etiology of diseases in terms of a multiple webs (or pathways), 
each involving multiple strands (MacMahon et al., 1960; Schwartz and Susser, 2006). 
As noted above, research on type 2 diabetes has identified two large webs, one entailing 
risk factors pertaining to excessive energy intake (food and beverage consumption) and 
one pertaining to insufficient energy expenditure (physical inactivity) (Hill et al., 2013). 
The influence on type 2 diabetes of these risk factors is mediated through obesity and 
overweight status. Indeed, the interdependence between type 2 diabetes and obesity is 
such that the term “diabesity” has been introduced into the literature (Hill et al., 2013). 

 
Figure 2. Examples of Web of Causation for Two Diabetes Risk Factor Sets 

 
Figure 2 presents an example of two of the main webs of causation associated for 
diabetes in an urban setting, based on the socioecological risk factors described by Hill 
et al. (2013). The two pathways from an urban setting each run through body weight but 
each entails a different domain of risk factors, one focused on the food and beverage 
environment and one on the physical activity environment. It should be noted that the 
example does not include all of the possible strands within each of these webs. In 
addition to these two relatively well-established webs pertaining to type 2 diabetes, 
there are likely others, such as the recent stress models described by Kelly and Ismail 
(2015). The strands within these will likely look different to those shown in Figure 2. 
The primary function of the figure is to offer a heuristic device that helps one 
understand the multiple causal pathways associated with a chronic disease such as type 
2 diabetes. However, such a device can also be used to help guide the construction of 
systems models and to identify possible leverage points for interventions. 
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OVERVIEW OF CHRONIC DISEASE SYSTEMS MODELS 
 
There is growing recognition that relationships between risk factors at multiple levels 
influencing health and disease often involve dynamic feedback and changes over time. 
Such nonlinear mechanisms challenge traditional statistical approaches to identifying 
causality (Galea et al., 2009). In contrast, system science approaches offer holistic 
understanding of dynamically complex problems and provide tools for addressing such 
problems through use of various modelling methods, such as system dynamics models 
and agent-based models (Forrester, 1971; Mahamoud et al., 2013; Meadows, 2008; 
Sterman, 2006). These computational systems models take into account the causal 
influence at multiple levels and the interrelations among causal covariates that strain 
most widely used analytic methods (Elkins and Gorman, 2014; Galea et al., 2009; Luke 
and Stamatakis). 
 
System dynamics models (SDMs) and agent-based models (ABMs) have been used to 
study the effects of different social policies on chronic disease problems, as these models 
provide a means to test theories about reality where complex relations exist between 
multiple variables, feedbacks, and dependence between individuals, as well as inputs at 
varying levels of organization and across time. Such a method applied to chronic disease 
allows for the prediction of etiologic agents and effects of interventions, defining 
characteristics of at-risk individuals, and identifying key data missing from 
understanding of health and disease (Ness et al., 2007). Each approach has strengths 
and weaknesses and therefore their application to understanding chronic disease, and 
diabetes in particular, have varied. 
 
Agent-based Models of Type 2 Diabetes 
 
Agent-based modeling provides a potentially powerful tool for understanding and 
constructing the mechanisms that generate macro-level social forms (Cedermann, 2005; 
Epstein, 1999; Gilbert, 2008). It involves “growing” social systems and structures in a 
computer from the interactions of individual entities (or “agents”) that use local and 
simple behavioral rules to move about their simulated environment and to interact with 
one another (Epstein and Axtell, 1996). As Epstein (1999) observes, ABMs provide a 
computational test as to whether a specific set of local interactions (that is, a specific 
micro-specification) is sufficient to generate or “grow” the macrostructure of interest.  
 
With regard to type 2 diabetes, ABMs have used to examine a number of the risk factors 
associated with the disease – notably diet, exercise, and weight. Of most interest to the 
current attempt to model the effects of prevention efforts focused on type 2 diabetes in 
south Texas, are those simulation projects that have built agent-based models using 
data pertaining to specific geographic locations (e.g., Widener et al., 2013; Yang et al., 
2011). Orr et al. (2014), for example, developed a simulation model that represented the 
economic and racial distribution (black and non-Hispanic whites only) of the 100 largest 
metropolitan statistical areas in the USA. They used the model to examine the effects on 
healthy diet of improving school quality by lowering the student-to-teacher ratio in 
neighborhoods in which this was high. They were especially interested in the policy’s 
impact on black-white disparity in healthy eating. The effects of the policy were 
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examined under different levels of social norms concerning a desirable level of healthy 
diet and in the presence and absence of social network influences on this social norm. 
The simulations showed that the policy had a positive effect on the population-level 
racial disparity in diet, but it did not entirely eliminate it. The effect of the policy also 
varied under different social norm and social network conditions (e.g., the reduction in 
disparity was smallest when the norm was healthy).  
 
System Dynamics Models of Diabetes 
 
Unlike ABMs that emphasize the heterogeneity of actors and the importance of their 
interactions, the basic building blocks of system dynamics models are stocks that are 
accumulations of things within the system (e.g., diabetic patients) and flows that are the 
rates at which things transition between stocks (e.g., the rate at which prediabetics 
transition to diabetics). Using such models, the researcher can observe the 
consequences of manipulating the variables that influence flows (e.g., how does the 
prevalence of obesity in a population affect the prevalence of diabetes). The researcher 
can also manipulate these variables using data from the scientific literature pertaining to 
specific types of interventions (e.g., how much of a reduction in the prevalence of obesity 
can we anticipate from primary prevention programs and how will this affect the 
prevalence of diabetes). This is the basis of using systems dynamic models to conduct 
virtual experiments. And such models have been employed by public health researchers 
to study a variety of chronic diseases (notably cardiovascular disease), especially the 
effects of population dynamics, social determinants, treatment modalities, and 
upstream and downstream interventions on incidence, prevalence and mortality (e.g., 
Hirsch et al., 2010; Homer et al., 2007; 2010; Mahamoud et al., 2012).  
 
With regard to diabetes, Jones et al. (2006) developed a SDM to examine the growth of 
diabetes since 1980 and the future of diabetes morbidity, mortality, and costs to 2050. 
The model was calibrated using US Census data, health data pertaining to the US adult 
population and evidence from the scientific literature. The prevalence and morbidity 
output of three models, each employing a different policy intervention (enhancing 
clinical management of diabetes, increasing management of prediabetes, and reducing 
obesity prevalence), was compared to a baseline model that included no intervention. 
The analyses showed the importance of obesity in driving diabetes prevalence, the 
inability of management and control measures alone to control prevalence, and 
significant delays between primary prevention measures and improvements. Milstein et 
al. (2007) used the model developed by Jones et al. (2006) to examine the feasibility of 
the Healthy People 2010 diabetes prevalence objective, which sought a reduction from 
39% in 1997 to 25% in 2010. The simulation output demonstrated that this objective 
was implausible and, hence, unattainable. It also showed that the achievement of other 
Healthy People 2010 diabetes objectives, such as increasing diagnosis and decreasing 
mortality, would serve to increase prevalence. 
 

SELECTING A MODELING APPROACH 
 
A model, whether mental or mathematical, empirical or systems, is only as good as the 
assumptions upon which it is based, the formulae producing it, and how effectively it 
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captures the real system-of-interest. Within social system modeling, recognition is 
increasing for the need for systems methods that capture social complexity and 
dynamics in order to produce effective change for deficiencies, but there has been little 
attention given to theoretical assumptions regarding complexity and the purpose of the 
system. This is particularly true in systems modeling of health problems and potential 
interventions, where such assumptions influence model development and interpretation 
(Sterman, 2006). 
 
In developing public health interventions, program developers and policy analysts 
frequently rely on simple unidirectional models of cause-and-effect that ignore and 
disregard the complexity of the phenomenon they hope to change (Hirsch et al., 2007). 
Interventions built upon such models are frequently ineffective (and at times 
iatrogenic), but results that are unrelated to or at odds with those expected are ignored, 
explained away, or put down to poor model fit (Hirsch et al., 2007). Yet programs built 
upon such principles are in continued use as the mental models that inform these are 
rarely subjected to critical tests. There are fundamental reasons why people misjudge 
the behavior of systems, as there are orderly processes working in creating human 
judgment and intuition that often lead to wrong decisions when faced with complex and 
highly interacting systems. Interventions that are more effective are only likely to occur 
through a better understanding of the social system-of-interest that the program seeks 
to correct (Forrester, 1971).  
 
Social and public health systems are complex and hard to understand and to change, but 
new laws and government programs rarely use formal simulation models to estimate the 
effects of these before implementation (Sterman, 2006). It is possible to construct 
computer models of social systems that, while simplifying “real world” processes, are far 
more comprehensive and formal than the mental models otherwise used as the basis for 
governmental and programmatic action. Such computer models are frequently used in 
testing technology or equipment to identify weaknesses that can be corrected before 
they are fully implemented. However, such models and tests are rarely used in guiding 
programs or legislation to prevent failures in social and public health systems. While 
these models and tests do not guarantee against failure, but they do allow for identifying 
potential problems and intervention points in ways that the typical processes guiding 
interventions within these systems do not (Forrester, 1971).  
 
There is nothing novel about using models to represent social systems, as they are 
instinctively used for decision-making as people rely on mental images to understand 
the world around them where concepts and relationships are used in representing the 
real system. A mental image is a model that acts as a basis for decision-making whether 
by individuals or institutions. However, a mental model is fuzzy, incomplete, and 
dynamic as it changes with time and context of a situation; its underlying assumptions 
are typically not clear, and its goals may vary over time. A computer model that 
explicitly articulates the underlying assumptions and mechanisms of the system allows 
for more complexity, and avoids internal contradiction and faulty assumptions that 
frequently appear in mental models. Computer models are stated explicitly, wherein 
mathematical notation is unambiguous, language is clear, simple and precise, and 
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concepts and relationships are clearly stated; mental models tend not to have these 
features (Forrester, 1971). 
 
However, it is important to recognize that a computer model is only as good as the 
expertise behind its formulation and how that captures the essence of the social system 
it presumes to represent. Building mathematical models on formulated techniques 
and/or according to a conceptual structure that does not capture the multiple-feedback-
loops and nonlinear nature of real systems limits any model. Such models explain why 
there are so many failed efforts to improve social systems. As computer models can be 
constructed that are superior to mental models, such models should be used as the basis 
for social and public health programs. This would move us beyond the use of ineffective 
interventions based on ill-conceived mental models of social problems and facilitate the 
development of effective interventions and changes in system deficiencies (Forrester, 
1971; Sterman, 2006). 
 
In addition, simulation models provide researchers and policymakers with “low cost 
laboratories for learning” (Sterman, 2006). One can manipulate features of these worlds 
in a manner that is not feasible or ethical in the real world. One can also accelerate the 
effects of changes in these features and observe how they affect the behavior of other 
parts of the system. In the real world, the effects of such changes may take years to 
unfold, and the mechanisms through which they affect behavior may be unobservable 
(Sterman, 2006). 
 
Choosing Between Models 
 
When attempting to use models to intervene within social systems and health, it is 
important to understand what the assumptions are and the value of the method chosen 
for modeling that system. It is important to use systems models appropriate to the 
system-of-interest that consider not only the contextual factors related to individuals, 
the environment, and their interactions, but also to consider how the value of the model 
sought for producing change in such a system is influenced by the method and its 
assumptions that allow for interpretation of social system behavior. Not only must the 
model formulation capture the essence of the real-world system, the modeling technique 
must use a conceptual structure appropriate to understanding and changing that system 
in order to be useful.  
 
Each systems model has a paradigm characterizing it by a set of fundamental 
assumptions and underlying concepts wherein each method is itself based on a model of 
how the model should be done. By assuming the model should be done a certain way, 
the modeler (whether explicitly or implicitly) makes assumptions about the world 
(Lorenz and Jost, 2006; Meadows and Robinson, 1985). For example, when a modeler 
selects a system dynamics model, he/she selects a paradigm that asserts that the 
system-of-interest is comprised of stocks, rates, levels and feedback loops (Meadows, 
1989; Sterman, 2006). In contrast, in selecting an agent-based model, the modeler is 
assuming that there is some emergent quality to the phenomenon-of-interest and that 
the underlying mechanisms explaining this are due to the micro-interactions between 
autonomous agents over time and between agents (that have the capacity to learn and 
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adapt) and their environments (Cederman, 2005; Macy and Willer, 2002). Thus, 
questions about policy decisions and resources can be seen as most amenable to 
understanding through SDMs (e.g., Jones et al., 2006; Homer et al., 2010), whereas 
questions about the effects of social interactions and the built environment might 
require the micro-detail of agent-based models (e.g., Auchincloss and Diez Roux, 2008; 
Orr et al., 2014). However, it should be noted that some systems can be modeled using 
either approach and that hybrid simulations involving both approaches have also been 
developed in some areas of public health research, notably infectious disease 
epidemiology (Borshchev et al., 2007; Macal, 2010; Rahmandad and Sterman, 2008). 
 

FRAMING AND MODELING TYPE 2 DIABETES IN THE LGRV 
 
According to Larme and Pugh (2001), diabetes prevalence in the LGRV region is as high 
as 21%. Brown et al. (2002) noted that the Mexican American population predominantly 
comprising the LGRV population has the highest diabetes-related death rates in Texas 
and in certain areas of this region as many as 50% of the Hispanic population aged over 
35 years have type 2 diabetes. Furthermore, Brown et al. (2005) assert that in 
communities with high diabetes-related unemployment, income reductions related to 
diabetes translate into decreased local spending, increased layoffs, and increased 
medical. Since these high-risk communities have a particularly high prevalence and 
incidence of the disease, a model capturing the extent of the health problem and the 
economic burden it imposes, while at the same time analyzing an array of possible 
intervention effects, could be crucial to reducing type 2 diabetes and informing policy 
decisions. Such issues might be best addressed through a system dynamics model.  
 
As noted above, by framing type 2 diabetes as a population-level problem and selecting 
a system dynamics model, the modeler assumes the system-of-interest and problem 
within such is comprised of stocks, rates, levels, and feedback. Thus, modeling type 2 
diabetes prevalence in the LRGV could assume the population is comprised of stocks of 
people within different vulnerability states that enter, leave, or progress through the 
system via mechanisms pertaining to diagnosis, disease progression, and death rates. 
For example, Figure 3 is a conceptual SDM that would allow one to test how an income-
based eligibility criterion influences resource allocation to determine access to resources 
for diabetes care and management within the community. More specifically, this 
conceptual model would test what happens to the health status of the population if 
eligibility criteria allowed more people access to more resources for care. 
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Figure 3. Conceptual System Dynamics Model of Resource Allocation 
 
If the purpose of the model is to guide policy decisions pertaining to the distribution of 
resources, then one could test intervention related to prevention and treatment of type 2 
diabetes both at a population level and among vulnerable subgroup (such as those 
described in Figure 1) based on their effectiveness and/or cost. Thus, a modeler seeking 
to find the most effective intervention to reduce type 2 diabetes within the LRGV would 
find value in a model that could test the effectiveness of different interventions. A 
modeler concerned primarily with the cost of reducing type 2 diabetes in the community 
could find value in a model testing the costs of different interventions given the 
timeframe within which costs are most important (e.g., short-term or long-term) so as 
to allocate resources to the intervention reflecting the best cost-savings appropriate to 
the timeframe. 
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In contrast, by selecting an agent-based model, the modeler is making the assumption 
that type 2 diabetes is an emergent quality produced by interactions between 
autonomous agents as they interact with one another and with their environment. Prior 
modeling efforts have shown that the main risk factors for type 2 diabetes (obesity, diet, 
and lack of exercise) are influenced by social interactions within networks and by the 
built environment (e.g., Orr et al., 2014; Yang et al., 2011). These are the domains of risk 
factors shown in Figure 2. The value of such a modeling exercise lies in its ability to 
guide community-based interventions pertaining to issues such as the number of fast 
food restaurants, the safety of public places, and the availability of green spaces (Sallis 
and Glanz, 2009). Figure 4 presents a preliminary ABM of access to restaurants in the 
LRGV. 
 

 
Figure 4. Conceptual Agent-based Model Testing the Influence of 

Restaurants on Type 2 Diabetes among Different Populations in the LGRV 
 

CONCLUSION 
 
Selecting a modeling approach requires the modeler to make assumptions about the 
world and the mechanisms that produce the phenomenon-of-interest.  In addition, there 
must be a purpose to modeling the system-of-interest for the model to be of value 
(Lorenz and Jost, 2006; Meadows and Robinson, 1985). While a system dynamics 
model or an agent-based model might each capture important aspects of a real-world 
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system, which model is of value will depend upon the selection of an approach, since the 
latter reflects the modeler’s (1) framing of the problem and (2) purpose in modeling the 
system-of-interest.  
 
In modeling type 2 diabetes in the LRGV, a system dynamics model could be more 
valuable than an agent-based model if the purpose of the model is to make decisions 
about allocating resources to reduce prevalence in the population reflective of the value 
the modeler holds in the effectiveness and/or costs of different interventions. On the 
other hand, an agent-based model would be more valuable if the purpose of the model is 
to understand the effects of social interactions among autonomous agents and the 
environment on the prevalence of type 2 diabetes and to identify community-based 
interventions focused on social networks and the local built environment. 
 
From a socioecological viewpoint both modeling approaches have value as they each 
entails framing the problem of type 2 diabetes as something other than a problem 
resulting from deficiencies in the knowledge, attitudes and behavior of individuals. 
Accordingly, each moves the discussion of solutions to the problem of type 2 diabetes 
away from behavioral and education-based interventions designed to “fix” individuals 
one-by-one. As noted above, such interventions have proven to be of limited efficacy, 
and it is now increasingly recognized that other approaches to prevention need to be 
considered (Hill et al., 2013; Kaldor et al., 2015). Both system dynamics and agent-
based models redirect prevention efforts from an emphasis on individuals and programs 
to an emphasis on policies and communities. Policies can be introduced at both a state 
level and a local level, and evidence suggests that they are more effective in reducing the 
major risk factor for diabetes, such as poor nutrition, physical inactivity obesity, than 
are individual-level programs (Graff et al., 2012; McKinley and Marceau, 1999; Sallis 
and Glantz, 2009). Moreover, such approaches are especially relevant to an 
economically disadvantaged, high-risk population such as that of the LRGV as they 
avoid framing the problem in a manner that “blames the victim.” The individual-level 
framing of diabetes that informs the dominant educational approaches to type 2 
diabetes prevention essentially holds those at-risk responsible for engaging in health-
promoting behaviors (Adler and Stewart, 2009). The two modeling approaches 
discussed above recognize that this is unreasonable when individuals lack the resources 
to eat in a healthy manner and engage in physical activity and when the environments in 
which they live are not conducive to engaging in either behavior. 
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