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ABSTRACT 
 
Currently it is common to use sensors in all aspects of daily life. So, in geophysical 
processes electronic sensors are required to measure and automate different tasks such 
as characterization of deep wells, basins, lakes and caves among others. Acoustic 
sensors are famous because its foundation is mechanical detection, or a sound wave. 
The acoustic signals are able to be reflected in places which other signals cannot operate 
either drawbacks or where the liquid moves. 
 
This research aims to develop a systemic mathematical model, representative of the 
acoustic waves used in acoustic sensors, for analyzing the response to deterministic and 
non-deterministic variables, also, that assists in the analysis of the damages that have 
with environmental disturbances, problems which is currently being studied in the 
worldwide, in order to expand the potential of using acoustic sensors in the global 
scope. 
 
To achieve the objectives of this research, a systemic and systematic approach 
methodology is followed, using techniques based on sliders modes to design state 
feedback control, allowing robustness in the system. Likewise, application results are 
discussed in the model for optimization. The application of theories and methods, with a 
systemic and systematic approach enables other form of analysis, interpretation and 
solve systems problems. 
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1. INTRODUCTION	
  

 
In geophysics, the acoustic processes are particularly interesting because described 
different phenomena in nature, such as the Doppler effects with its relative velocity 
between two bodies [4]; stochastic entropy [10] with its pernicious effects when the 
signal exceeds the allowable thresholds [7].  

The application of different methodologies in resonance is used to describe the motion 
of an embryo in a womb or an egg, or fluid levels in an oil well. 



 
Physically, the identification process is based on electronic sensors measuring and 
building the forms, allowing industrial automatic inspection where man has no access or 
the human eye  cannot see, as the water depth sensing is performed by sonar [8], [9], 
[6]. 
 
To meet the demands of science, multiple types of sensors such as photo-electric, 
magnetic, inductive, nuclear, acoustic, among others have been created. The acoustic 
sensor has a great potential still to be exploited in applications such as: content 
description in deep wells, watersheds, lakes, caverns, applied in places where solutions 
consider a very rough shape container [6]. 

In general, the challenges of all acoustic sensors are: 

a) The signal type must be consistent with the environment, where the measure 
movements permit describing the contents, 

 
b) All types of sensors are designed for a range defined without self-adjusting. 
 
An acoustic signal is able to be reflected in areas where other types of signal cannot 
operate, either by the displacement drawbacks fluid or because they would require 
excellent reflected signals or with better qualities, i.e., without perturbations. For 
example, a distance of at least 500 m in aqueous media, operating in power fluid lines 
with different speeds. 

So that, a large distances, the acoustic devices require high quality signals and potency.  
Instead of it, in this paper presents an acoustic model, taking into account the Doppler 
signal as a reference adjusting its parameters with an adaptation technique. These 
adaptive parameters solve the device identification. Offering a high capacity into 
acoustic sensor with its distance self-regulation. Hence, the device now has a self-
regulation distance with adaptation with respect to the reference signal, based on 
parameters identification system context. 

In an event, where the acoustic device needs to be self-adjustable [8], [9] and, [6], the 
estimation technique needs the adaptive control action. To overcome the current 
limiting measurable by the device.  The control action regulates the acoustic signal level 
emitted by a piezoelectric, so as to ensure, that the reflected echo signal intensity could 
be read by the acoustic sensor [1].  

The model description, the control system and controller parameter estimation, were the 
basis for a particular container description, without presupposing known the distance 
adjusting parameters through the measurement system and control action. 

 
Therefore, the electric model of piezoelectric actuator according to [1] is simplified into 
the form (1) 

𝑋! = 𝐴𝑋! + 𝐵𝑤!	
  
𝑌! = 𝐶𝑋! + 𝐷𝑤! 

(1) 

 
Where, the matrix order corresponds to differential first order equation. 



  
Theorem 1. Let the model considered in [1] in state space has the form (1). In 
agreement to [3] and (1), the recursive form is (2). 

 
𝑌! = 𝑮𝑌! +𝑯𝑉!	
   (2) 

 
Where:𝑮, 𝑯 are matrices  bounded with 𝑮 ∈ ℝ 𝟎,𝟏

𝒏×𝒏 and, 𝑯 = 𝑓 𝐴,𝐶,𝐵,𝐷 , 𝑉! ∈
𝑁 𝜇,𝜎! < ∞  

Proof (See Annex). 

 
2. CONTROL LAW 

Theorem 2. The control law system with respect to (2) has the form (3) 
 

𝑉!∗ = 𝐻! 𝐸!∗ − 𝐺𝑌!  (3) 
 
With 𝐻!the pseudo-inverse matrix𝐻, the innovation process 𝐸!  considered in (2), 
and, 𝐺 as a matrix having the form 𝐺 ∈ ℝ !,!

!×! . 

Proof (See Annex). 

The piezoelectric main problem corresponds to parameter distance description [4], [1]. 
It is solved estimating this gain with a lower uncertainty in almost all points that make 
up its surface. 
 
 

3. PARAMETERS ESTIMATION 

Applying the control law (3) into the model described in (2), converge to reference 
system (𝑌!) only if it is known the matrix 𝑮[1], [3]. Unfortunately, the reference 
system viewed as a black-box scheme [3]; the matrix gain 𝑮is unknown, because 
correspond to the internal system description. Consequently, the estimation process is 
required describing the internal matrix gain through the time process [3], [5], [2]. 
 
 
Theorem 3. Let the recursive model (2), with answer corresponds to the reference 
output system, the stochastic matrix estimation is (4) 
 

𝑮𝒕 = 𝑷𝒕𝑸𝒕 (4) 
 
With 𝑷𝒕,𝑸𝒕 covariance and variance matrices, respectively with respect to (2). 
 
Proof (See Annex). 
 
Theorem 4.The recursive form of (4) in discrete manner with stationary conditions is 
(5). 

𝐺! = 𝛼!𝑮!!! + 𝛽! (5) 



 
Proof (See Annex). 

A piezoelectric device developed as a mathematical model viewed as (1), considering 
the black-box properties, only is observed input and output signals without knowing 
exactly the internally system operations. The control law not affects the reference 
system but the model through the parameters is estimated in the probability sense 
affecting the model converging to the reference piezoelectric device answer. All results 
are described into the real numbers (ℝ), specifically over the hypothetical line that 
describes the container form. 

The piezoelectric block diagram using the control action with adaptation into model 
system, and it is shown in figure 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Piezoelectric system viewed as a control block diagram with parameters 
adjusted dynamically 
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4. SIMULATION 
 

The piezoelectric signal (𝑦!) with stochastic properties tracking by the model output 
answer (𝑦!)  with parameters estimation affecting the control law action, both 
considered in (2) is illustrated in figure 2.  
 
 

 

 

Figure 2. Piezoelectric temporal signal (blue) and its tracking (red). 
 
 
The adaptation scheme viewed in figure 1, was applied in the control law and into the 
model, observing that the answer is very narrow with respect to the real piezoelectric 
results. 
 
In figure 3, is observed the innovation process. 
 

 

Figure 3. Innovation process through the time t 
 
 
The convergence rate generated between the reference signal and the tracking output 
model is measured in decibels based on stochastic entropy and has the form 𝐻! =
−20[𝑒!𝑙𝑛 𝑒! − 1/20 𝐻!!!], with𝑒! ≔ 𝑦! − 𝑦!and the results is viewed in figure 4. 
 
 

0 10 20 30 40 50 60 70 80 90 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 10 20 30 40 50 60 70 80 90 100
-3

-2

-1

0

1

2

3

yt vs 𝑦t 

t 

t 

Innovation Process 



 

Figure 4. Stochastic entropy with respect to difference between the tracking and 
reference signal 

 

CONCLUSIONS 

This paper presented a model considered into the references as a piezoelectric device 
description. The control system over the model was required with a matrix gain 
parameters, having and adaptive movements and helps into the tracking operations. The 
theoretical results affect the dynamical model properties and the control action. The 
simulation tracking was acceptable in probability sense, with convergence rate 
measured in stochastic description manner, in decibels.  The piezoelectric device output 
has an evolution with innovation signal.  The tracking permits a great convergence with 
stationary conditions affecting the control action over the model in positive form, 
minimizing the convergence error near to piezoelectric answer with random occurrence. 
The control law depends on the internal parameters, with adjustable gains estimation. 
The simulation results describe the results proposal, with a convergence level bounded 
in its movements as shown in the entropy figure. 

 

ANNEX 

Proof (Theorem 1). 

Let the model (1), with the first derivate described in (4). 

𝑌! = 𝐶𝑋! + 𝐷𝑤! (4) 
 
Substituting in (4) to 𝑋! de (1), has (5) 

𝑌! = 𝐶𝐴𝑋! + 𝐶𝐵𝑤! + 𝐷𝑤! (5) 
 
The internal state 𝑋! in agreement to (1) is described in (6) with respect to observable 
signal.  

𝑋! = 𝐶!𝑌! − 𝐶!𝐷𝑤! (6) 
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Considering (6) in (5), has (7)  

𝑌! = 𝐶𝐴𝐶!𝑌! − 𝐶𝐴𝐶!𝐷𝑤! + 𝐶𝐵𝑤! + 𝐷𝑤! (7) 
 
In symbolic form (7) is described in (8) with 𝑮≔ 𝐶𝐴𝐶!, 𝑯≔ −𝐶𝐴𝐶! + 𝐶𝐵 𝐷 , 
and 𝑉! ≔ 𝑤! 𝑤! !. 

𝑌! = 𝑮𝑌! +𝑯𝑉! (8) 
 
Corresponding to (2). 

 
Proof (Theorem 2). Let the system (2) accomplish with (9) 

𝑀!𝑀!
! <   0 (9) 

 
Where the trajectory region with respect to the gain matrix𝑀!, is described in (10) 

𝑀! = −𝐹! (10) 
 
With 𝐹! , a continuous function bounded by intervals with uniform measure t,  
accomplishing with the innovation process (11) 

𝑌! = 𝑌! + 𝐹! (11) 
 
Considering to (2) in (11) has (12)  

−𝐹! = 𝐺𝑌! + 𝐻𝑉! − 𝑌! (12) 
 

The difference between 𝑌!𝑎𝑛𝑑𝐹!in (11) and agreement with (12) has (13). 

𝐹 𝑡 − 𝑌(𝑡) = −𝐺𝑌! − 𝐻𝑉! (13) 
 

The system inovation process (2) according to (11), it is described in (14) 

 𝐸! = 𝑌! − 𝐹! (14) 
 
(14) in (13) and 𝑉! ,  is develop in (15) 

𝑉!∗ = 𝐻! 𝐸!∗ − 𝐺𝑌!  (15) 
 
As a control law, described in (3).  

 
Proof (Theorem 3). 

Let 𝑍!! = 𝑓 𝑌𝑡 ,   such as applying the second probability moment (2) with respect to 
𝑍!!, has (16) 

𝑬 𝑌!𝑍!! = 𝑮𝑬 𝑌!𝑍!! +𝑯𝑬 𝑉!𝑍!!  (16) 
 



The mathematical operator properties in agreement to [3], [5] and, [2], the estimation is 
based on (16) has the form (17) 

𝑮𝒕 = 𝑬 𝑌!𝑍!! −𝑯𝑬 𝑉!𝑍!! 𝑬 𝑌!𝑍!! !  (17) 
 
Now, defining (17) with respect to (18) to P!,Q! in (18) 

𝑷! ≔   𝑬 𝑌!𝑍!! −𝑯𝑬 𝑉!𝑍!! y𝑸! ≔ 𝑬 𝑌!𝑍!! ! (18) 
 
And (18) in (17), the estimation matrix 𝐆𝐭 has the form (19) 

𝑮𝒕 = 𝑷𝒕𝑸𝒕 (19) 
 
Viewed in (4).  

 
Proof (Theorem4). Let (5) has the components in agreement to (18), with stationary 
conditions 𝐏𝐭is described considering [3], [5], [2] in recursive form (20). 

 

𝑷! =
!
!!

𝑌!𝑍!!
!

!!!

+ 𝑯
!!

𝑉!𝑍!!
!

!!!

 
(20) 

 
With a delay, 𝑷!!! is described in (21) 

𝑷!!! =
!

!!! ! 𝑌!𝑍!!
!!!

!!!

+ 𝑯
!!! ! 𝑉!𝑍!!

!!!

!!!

 
(21) 

 
(21) in (20) has (22)   

𝑷! =
!
!!

𝑌!𝑍!! +𝑯𝑉!𝑍!! + 𝑡 − 1 !  𝑷!!!  (22) 
 
Considering that (19) delayed has the form (23) 

𝑷!!! = 𝑮!!!𝑸!!!!  (23) 
 
And (23) in (22), has (24) 

𝑷! =
!
!!

𝑌!𝑍!! +𝑯𝑉!𝑍!! + 𝑡 − 1 !𝑮!!!𝑸!!!!  (24) 
  
(24) in (19), has (25) 

𝑮𝒕 =
!
!!

𝑌!𝑍!! +𝑯𝑉!𝑍!! + 𝑡 − 1 !𝑮!!!𝑸!!!! 𝑸𝒕 
 

(25) 
 

 
Minimizing (25) has (26) 

𝐺! =
!!!!!𝑸𝒕
!!

+ 𝑯!!!!!𝑸𝒕
!!

+
𝑡 − 1 !𝑮!!!𝑸!!!! 𝑸!

𝑡!  
(26) 



(26) Symbolically is described in (27) 

𝐺! = 𝛼!𝑮!!! + 𝛽! (27) 
 

With 𝛼!𝑎𝑛𝑑  𝛽! as (28) 

    𝛼! =
𝑡 − 1 !𝑮!!!𝑸!!!! 𝑸!

𝑡!  

𝛽! =
!!!!

!𝑸𝒕
!!

+ 𝑯!!!!
!𝑸𝒕

!!
. 

And (27) is viewed in (5).  
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